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Background — What is Battery Degradation

Battery Degradation:
the decline in performance
and capacity of the battery
over time

7 Degradation from Cycling Aging:
due to repeated charge and discharge
cycles, directly related to how the

\_ battery 1s used

\

)

/Degradation from Calendar Aging: A
due to battery's exposure to
environmental conditions,

\_ independent of its usage )
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e Current lack of study on battery degradation
for mining BEVs Nominal _
capacity
» Study the different patterns of battery
degradation in underground and surface mining

: &
vehicles S
="
S
* Forecast battery longevity for mining duty
cycles
Degradation

* Investigate the factors that most significantly

Operating
condition 1

Operating
condition 2

limit

influence battery degradation

Operating Time
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Battery Degradation Mechanisms

Solid—electrolyte
interphase (SEI)
growth

The electrolyte reacts with
the anode surface and
decomposes, forming a
solid layer

Initial layer thickens during
charging and discharging
cause loss of lithium
inventory from electrolyte
Decreases capacity and
increases internal resistance
or impedance

R
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Loss of active

material

Active electrode particles
become electrically isolated
due to cracking, mechanical
stress, or binder
degradation

Reduces the amount of
material available for
lithium intercalation,
leading to capacity loss

Lithium plating

Li+ ions from the
electrolyte form Li metal
on the graphite surface
Plated lithium grows in
needle-like, branching
structures called dendrites,
they can potentially create
an internal short circuit if
long enough

Form extra SEI
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Physics Model - Introduction

Doyle-Fuller-Newman Model (DFN)

Detailed 'Pseudo-2D' model that resolves electrochemical processes across two key
dimensions:
* Across the cell (x-direction): how ion concentration and potential change
through the anode, separator, and cathode
* Inside particles (r-direction): lithium diffusion within the active material
particles

Single Particle Model (SPM)

Highly simplified version of the DFN that assumes the electrolyte concentration and

potential are spatially uniform: . .
* Across the Cell (x-direction): electrolyte concentration and potential are : -
assumed uniform, and each electrode is reduced to a single representative ‘
particle

* Inside Particles (r-direction): lithium diffusion is resolved radially within

. ] Source: Kofi et al., J. Appl. Electrochem. (2017)
the average spherical particles of the anode and cathode
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Physics Model — Computational Comparison

Doyle-Fuller-Newman Model (DFN) Single Particle Model (SPM)
Lithium Diffusion in delz.r.t)] 1 8 de, | dcs(r.t) | 19 2 Oy
Solid Particles = o (Dile 1)) Ty = G ALy

Lithium Transport in Ae.c. 1t :
Electrolyte (35 J =V- (D:chf) + F 7ot (I? t] NOt lnCIUded fOI' SPM
SEI growth OLsgi(x,t)  Msgr | dLsmi(t)  Msm jspr(t)

ot i jser(, 1) dt  psF

 Both DFN and SPM are modeled by solving Partial Differential Equations (PDE). PyBaMM is an open-source Python library
specialized in this
 SPM is much easier to solve since it assumes uniform electrolyte concentration and has no x-dependence
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Empirical Model
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Source: Sarasketa-Zabala et al.(2014) Source: Wang et al. (2011)

*  For empirical models, the goal 1s to find a function that calculates degradation based on all parameters of interest (temperature,
depth of discharge, charge/discharge rate, etc.) with minimum error using empirical data
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Machine Learning - Introduction

Training and Validation

Data frame
Data Feature | .. | Feature | Prediction Prediction
point 1 n Target Pretrained Model Trained Model -

S eS @

\T:asting / New Data

EENE Y S I I )

*  For machine learning (ML) models, the inputs are called features, which are more flexible compared to those in physics or
empirical models. ML models learn the underlying relationships between the features and the prediction target
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Machine Learning — Why it works

Input Layer Hidden Layer Olltpllt Layer . Approximation Block for Two Neurons
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Universal approximation theorem: one hidden layer, a non-linear activation function, and enough neurons can approximate any
continuous function to a certain degree
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Machine Learning — Al and Machine Learning

Multilayer Perceptron (MLP)
* Dbasic deep learning model

* number prediction

Al * label classification

Machine Learning

Convolutional Neural Network (CNN)

* image classification

* object identification and detection .
Deep — ChatGPT* Gemlnl
Learning
Generative Al o e
* content creation o
Copilot
: ‘4
 Agentic Al .3

(G

e automated project management
» operate independently without constant
human input

Agent Builder
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Model type

Physics (SPM)

Parameters for Models

Input parameters

Electrode capacity

Field obtainable

Average particle radius

Reaction kinetics (exchange current)

Solid diffusion coefficients

SEI growth / side reaction rates

Operating data (current, voltage, temperature, SoC)

Empirical

Equivalent full cycles (EFC)

Operating data (current, voltage, temperature, SoC)

Calendar aging usage (SoC storage, Temperature)

Machine Learning

Flexible, can be field data or electrochemical properties or both

QIS S8 XXX X | X

R
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Model

Model Comparison

Pros

Can be used with limited field data

Cons

Requires electrochemical properties that are

Physics Provides physwal interpretability and allows for unobtainable from field data
extrapolation
Very fast to compute Only rehablg for the operating conditions and data
. .. used for fitting
Empirical Good for trend prediction . L.
Interoretable Little physical insight
P Requires full-life data from multiple batteries
: Very flexible e}bout 1nput. featqres : Poor extrapolation outside training distribution
Machine Can capture hidden relationships between input C . .
. .. Limited interpretability
Learning futures and prediction target

Good at handling complex non-linearity

Requires full-life data from multiple batteries

L
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Physics-informed Machine Learning

Trained ML
model 1

Public Pretrained
Datasets @ ML model 1

S ML model 2

Physics
model

* In the proposed Physics-informed Machine Learning model, public datasets are first used to train a ML model to capture the
relationship between cycling data and capacity. Field data are then passed through both the trained ML model and a physics model.
The physics states and the residuals between the two models are used as input features to train a final ML model

« It offers greater interpretability than a standalone ML model and mitigates the limited field data challenge for ML
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ML Model 1 — Data Overview

Example: Discharge capacity vs cycle number for 8
cells from the dataset

1.10 1
: Number Nominal o = \
Chemistry of Cells Capacity (Ah) Temperature (°C) RS N
2 105 - \
1 LFP 200 1.1 30 5
o
2 NMC 55 2 ~ 20 (room) S
& 1.00
3 NCA 66 3.5 25,35,45 5
<
4 NMC 55 3.5 25,35, 45 z
5 | NMC+NCA 9 2.5 25 97
Datasets: https://data.matr.io/1/projects/5c48dd2bc625d700019£3204
https://zenodo.org/records/10963339
https://zenodo.org/records/6405084 0.90 -

T T T T T T
0 250 500 750 1000 1250 1500 1750

Cycle Number
e The combined training and testing data points are 667000

I* Natural Resources Ressources naturelles
Canada Canada




ML Model 1 — Raw Data

Current Profile for 1 Cycle Voltage Profile for 1 Cycle Discharge Capacity Profile for 1 Cycle
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ML Model 1 — Feature Extraction

Voltage Curve Current Curve

I I T T
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* Features are extracted from the current and voltage curves during a short period before battery is fully charged
» 8 features are extracted from each curve: mean, standard deviation, kurtosis, skewness, duration, accumulated charge,
curve slope and curve entropy

I*I Natural Resources Ressources naturelles
Canada Canada




ML Model 1 — Modeling Result

Training Set Testing Set
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ML Model 1 — Modeling Result

MNonmalized Capacity 0.80-0.85 {Train) “ Monmnalized Capacity 0.85-0.90 (Train) @ Mormalized Capacity 0.90-0.95 ( Train) @ Mormalized Capacity 0.95-1.00 { Train)
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*  Error is calculated as (predicted capacity — true capacity)/true capacity x 100
* The maximum error for both the training and testing sets is approximately 8.5%
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Current Challenges and Future Work

Challenges : Future Work

* Due to the lengthy process of conducting Continue calibrating the ML model 1 of the

battery life cycle tests, it is challenging to Physics-informed ML model

gather a dataset with large number of

battery cells from either lab or field Process newly obtained field data and
apply the physics model to it

Physics-based models require

electrochemical parameters that are often Integrate calendar aging into the Physics-

unavailable from field data. Methods must informed ML model

be developed to calibrate these parameters

obtained from online sources and the

literature
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Appendix - Principle Equations

Doyle-Fuller-Newman Model (DFN) Single Particle Model (SPM)

Lithium Diffusion in des(z, 7, t) _ 1 i D T 2 0c; deg(r,t) 1 8 5 0c,
Solid Particles ot r? 3"( (e )T, ) ot ﬁ@(‘oﬁ(c”‘ Nrg, )
Lithium Transport in O(ecce) _ . (e -t :
Electrolyte ot V- (De'Vee) + Aot (2, ) Not included for SPM
Charge Conservation - - BT ‘ .
Charge Conservation . ‘ '

; (0 Vés) = —a jror(z, 1) Not included for SPM
(solid)

OLggi(z,t)  Msgr . dLspr(t)  Msgr .
El th — —
S grow ot p— JSEI (-’ﬂ, t] dt pa— .’}‘SEI{t}
F t l1—a)F t i . Fr,(t 1— a)Fnult

Lithium plating jn(z.t) Zin,pl(m,t][t%xp(%m) —exp( Q%R;:*?PI(E’ ))] D) :mbpl(t)[exp(ﬁTﬂpﬂ)) —exp( - ¢ ch T ))]
Loss of Active Material jinex(z,t) = fram(z,t) a(z) iy [e™FV AT — ¢ F/AT] Jinte(t) = fram(t) adg [e*FVET — gmoFn/RT]

I*I Natural Resources Ressources naturelles
Canada Canada




	 Battery Degradation Modeling for Mining BEVs
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

