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Background – What is Battery Degradation

Degradation from Calendar Aging:
 due to battery's exposure to 
environmental conditions, 
independent of its usage

Degradation from Cycling Aging:
due to repeated charge and discharge 

cycles, directly related to how the 
battery is used

Battery Degradation: 
the decline in performance 
and capacity of the battery 

over time
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Motivation
• Current lack of study on battery degradation 

for mining BEVs

• Study the different patterns of battery 
degradation in underground and surface mining 
vehicles

• Forecast battery longevity for mining duty 
cycles 

• Investigate the factors that most significantly 
influence battery degradation

 
Operating Time

C
ap

ac
ity

Degradation 
limit

Nominal 
capacity

Operating 
condition 1

Operating 
condition 2



PROTECTED A - PROTÉGÉ A

Battery Degradation Mechanisms

Solid–electrolyte 
interphase (SEI) 

growth
• The electrolyte reacts with 

the anode surface and 
decomposes, forming a 
solid layer

• Initial layer thickens during 
charging and discharging 
cause loss of lithium 
inventory from electrolyte 

• Decreases capacity and 
increases internal resistance 
or impedance

• Active electrode particles 
become electrically isolated 
due to cracking, mechanical 
stress, or binder 
degradation

• Reduces the amount of 
material available for 
lithium intercalation, 
leading to capacity loss

Loss of active 
material Lithium plating

• Li+ ions from the 
electrolyte form Li metal 
on the graphite surface

• Plated lithium grows in 
needle-like, branching 
structures called dendrites, 
they can potentially create 
an internal short circuit if 
long enough

• Form extra SEI
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Physics Model - Introduction 
Doyle-Fuller-Newman Model (DFN) 

Detailed 'Pseudo-2D' model that resolves electrochemical processes across two key 
dimensions:

• Across the cell (x-direction): how ion concentration and potential change 
through the anode, separator, and cathode

• Inside particles (r-direction): lithium diffusion within the active material 
particles

Source: Kofi et al., J. Appl. Electrochem. (2017)

Single Particle Model (SPM)

Highly simplified version of the DFN that assumes the electrolyte concentration and 
potential are spatially uniform:

• Across the Cell (x-direction): electrolyte concentration and potential are 
assumed uniform, and each electrode is reduced to a single representative 
particle

• Inside Particles (r-direction): lithium diffusion is resolved radially within 
the average spherical particles of the anode and cathode
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Physics Model – Computational Comparison
Doyle-Fuller-Newman Model (DFN) Single Particle Model (SPM)

Not included for SPM

Lithium Diffusion in 
Solid Particles

Lithium Transport in 
Electrolyte

SEI growth

• Both DFN and SPM are modeled by solving Partial Differential Equations (PDE).  PyBaMM is an open-source Python library 
specialized in this

• SPM is much easier to solve since it assumes uniform electrolyte concentration and has no 𝑥𝑥-dependence 
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Empirical Model

• For empirical models, the goal is to find a function that calculates degradation based on all parameters of interest (temperature, 
depth of discharge, charge/discharge rate, etc.) with minimum error using empirical data

Source: Sarasketa-Zabala et al.(2014) Source: Wang et al. (2011)
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Machine Learning - Introduction 
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• For machine learning (ML) models, the inputs are called features, which are more flexible compared to those in physics or 
empirical models. ML models learn the underlying relationships between the features and the prediction target
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Machine Learning – Why it works

h1

h2

y

h1 = σ (w1 x + b1)

h2 = σ (w2 x + b2)

y = wout_1 h1 + wout_2 
h2 + … + bout 

x

Input Layer Hidden Layer Output Layer

• Universal approximation theorem: one hidden layer, a non-linear activation function, and enough neurons can approximate any 
continuous function to a certain degree

Approximation Target 
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Machine Learning – AI and Machine Learning

Deep 
Learning

Machine Learning

AI

Multilayer Perceptron (MLP)
• basic deep learning model
• number prediction
• label classification 

Convolutional Neural Network (CNN) 
• image classification 
• object identification and detection 

Generative AI 
• content creation 

Agentic AI 
• automated project management
• operate independently without constant 

human input
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Parameters for Models

Model type Input parameters Field obtainable

Physics (SPM)

Electrode capacity
Average particle radius

Reaction kinetics (exchange current)
Solid diffusion coefficients

SEI growth / side reaction rates
Operating data (current, voltage, temperature, SoC)

Empirical

Equivalent full cycles (EFC)

Operating data (current, voltage, temperature, SoC)

Calendar aging usage (SoC storage, Temperature)
Machine Learning Flexible, can be field data or electrochemical properties or both
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Model Comparison

Model Pros Cons

Physics
• Can be used with limited field data
• Provides physical interpretability and allows for 

extrapolation

• Requires electrochemical properties that are 
unobtainable from field data

Empirical
• Very fast to compute
• Good for trend prediction
• Interpretable 

• Only reliable for the operating conditions and data 
used for fitting

• Little physical insight
• Requires full-life data from multiple batteries

Machine 
Learning

• Very flexible about input features
• Can capture hidden relationships between input 

futures and prediction target
• Good at handling complex non-linearity

• Poor extrapolation outside training distribution
• Limited interpretability
• Requires full-life data from multiple batteries
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Physics-informed Machine Learning

• In the proposed Physics-informed Machine Learning model, public datasets are first used to train a ML model to capture the 
relationship between cycling data and capacity. Field data are then passed through both the trained ML model and a physics model. 
The physics states and the residuals between the two models are used as input features to train a final ML model

• It offers greater interpretability than a standalone ML model and mitigates the limited field data challenge for ML

Public 
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model

ML model 2

Pretrained 
ML model 1

Field 
Data 

Trained ML 
model 1
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ML Model 1 – Data Overview

Chemistry Number 
of Cells

Nominal 
Capacity (Ah) Temperature (℃)

1 LFP 200 1.1 30

2 NMC 55 2 ~ 20 (room)

3 NCA 66 3.5 25, 35, 45

4 NMC 55 3.5 25, 35, 45

5 NMC + NCA 9 2.5 25

Example: Discharge capacity vs cycle number for 8 
cells from the dataset
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Datasets: https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
                https://zenodo.org/records/10963339
                https://zenodo.org/records/6405084

• The combined training and testing data points are 667000
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ML Model 1 – Raw Data
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ML Model 1 – Feature Extraction

• Features are extracted from the current and voltage curves during a short period before battery is fully charged 
• 8 features are extracted from each curve: mean, standard deviation, kurtosis, skewness, duration, accumulated charge, 

curve slope and curve entropy
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ML Model 1 – Modeling Result
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ML Model 1 – Modeling Result

• Error is calculated as (predicted capacity – true capacity)/true capacity x 100
• The maximum error for both the training and testing sets is approximately 8.5%
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Current Challenges and Future Work

Future Work

• Continue calibrating the ML model 1 of the 
Physics-informed ML model

• Process newly obtained field data and 
apply the physics model to it

• Integrate calendar aging into the Physics-
informed ML model

 

Challenges 

• Due to the lengthy process of conducting 
battery life cycle tests, it is challenging to 
gather a dataset with large number of 
battery cells from either lab or field

• Physics-based models require 
electrochemical parameters that are often 
unavailable from field data. Methods must 
be developed to calibrate these parameters 
obtained from online sources and the 
literature
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THANK YOU!
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Appendix - Principle Equations 
Doyle-Fuller-Newman Model (DFN) Single Particle Model (SPM)

Not included for SPM

Not included for SPM

Not included for SPM

Lithium Diffusion in 
Solid Particles

Lithium Transport in 
Electrolyte
Charge Conservation 
(electrolyte)

Charge Conservation 
(solid)

SEI growth

Lithium plating

Loss of Active Material
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