

Control of DPM and Diesel Emissions Through Technology Retrofit

Dr. Lauretta Rubino CEO VERT Association

MDEC WORKSHOP: INTRODUCTION TO DIESEL EXHAUST OCCUPATIONAL EXPOSURE: HEALTH EFFECTS, MEASUREMENT AND CONTROL

October 24th, 2024 Sudbury Ontario, Canada

AGENDA

- Introduction
- VERT & Activities
- Diesel & Gasoline Particle filters BAT
- Particle Filters overview
- Diesel & Gasoline Retrofit
- > Typical Particle Filters failures
- VERT Filter Certification
- Summary

INTRODUCTION

International Agency for Research on Cancer

PRESS RELEASE N° 213

12 June 2012

IARC: DIESEL ENGINE EXHAUST CARCINOGENIC

Lyon, France, June 12, 2012 – After a week-long meeting of international experts, the International Agency for Research on Cancer (IARC), which is part of the World Health Organization (WHO), today classified diesel engine exhaust as carcinogenic to humans (Group 1), based on sufficient evidence that exposure is associated with an increased risk for lung cancer.

- From Sept 2023, Ontario, Canada, has introduced new rules lowering the permissible exposure limit for diesel particulates to 0.12 mg/m³ one of the strictest in North America
- **Using technologies like DPFs** & improving ventilation in mines is extremely important to meet the new safety standards
- Retrofitting DPFs to mining equipment significantly reduces harmful emissions, particulate emissions by up to 84% and particle numbers by > 97%, leading to a sharp decrease in miners' exposure to dangerous pollutants like elemental carbon

Lung Cancer death in exposed DPM workers

Research

China 100 - configurant 1996, second of 185 attacks to available or being field and 195 constants (and

The Diesel Exhaust in Miners Study (DEMS) II: Temporal Factors Related to Diesel Exhaust Exposure and Lung Cancer Mortality in the Nested Case-Control Study

Debus T. Niberman, "S Beyas A. Boorig," Jay Lubis," Barry Grandard," Aeron Blain," Rud Vermenton," Michael Argled," Nathan Appel," Nathaniel Bothman," Pierceix Scewer, 111 and Stelle Konton?

Yocaparined and Barrameneousl Epidemiology Branch, Division of Cancer Epidemiology and Genetics, V.S. National Cancer Facilitate, Berlands, Maryland, USA Deviane of Cancer Dashenishese and Genetics, U.S. National Cancer Realism, Robustle, Maryland, USA.

Devices of Cancer Epidemiology and Encircles, O.S. National Cancer Isodian, Berlands, McCarpinia, USA Theoretizate Stands, Devices of Encircular Dissols United Cancer Isodians, Berlands and Device and Bucht, Menganova, West Vegena, USA – Networkine Management Systems, In. RecVerb, Marchael, USA. Aug., 2023

tential public health burn

But known twe The Orient Gatanai is Mirrow Society (GMA) was an important constrainer to the International Agency fields expert the Agency field constraints whether the orient of a start constraints and of Cong Landerman and Agency (Landerman and Cong Landerman Agency (Landerman and Landerman and Agency (Landerman and Landerman Agency (Landerman Agenc

Mechanism We consistent a case-metric and y of lang cancer accord in a soluter of 12,119 workers in right manufal missio (178 hasg cancer double, 716 controls Centrols were acterned from contens who were after when the case likel, individually matched on rener, so, matchinexity, and heri variantees in the solution of the solution of the solution according to a solution (178 hasg) cancer double, for each other member, DMA notes (1986) note estimated by conditional regression enables, for solution (1972), an other other double, the solution (1974), an other other double, the solution (1974), and the solution of the solution of the solution (1974) and the solution of the solution (1974) and the solution of the production of the production of the solution of t

Receipt Obstactment with increasing (5-) lagged consideric expresses, pushing with a wipring of rol. for expresses of -2006 <3.700 agr of '9 (OH < 3.23, 10% contributes interval (CD / 3.07), 50%, followed by a plateatilitation among the lasticity expressed (HK < 1.08), 90% (S1, 1000, 40%). Patterns of the last constraints of CD / 3.07, 50%, followed by a plateatilitation of the lasticity expressed (HK < 1.08), 90% (S1, 1000, 40%). Patterns of the last constraints of the Lasticity area of the lasticity expression of the lasticity of the lasticit

Coversioner, DINS II thatings provide neight into the exponent emposes relationship between deard infrared and long samer interesting. The prememory difficient exponent incovering in the washes (II-10 g pairs 6 datafit, the saminal risk II or new pairs after suppose examine, and the plainatality in a bioing important implications for the anotherm of the three bioing relationship in addition of the interesting in the examines of the interesting in the same of the sam

- VERT is a Non-Profit International Association of filter, catalyst manufacturers, instrument, engine manufacturers, universities and research associates, founded in 1993 in Switzerland
- VERT stands for Verification of Emission Reduction Technologies & it is a Particle Filter Testing, Certification & Quality Control System, a Trade Mark for Particle Filters of Best Available Technology (BAT)
- The VERT[®] Association, originated during the NEAT New Transalpine Railways Program, which was one of the biggest tunneling projects in Europe at the time
- Since then, VERT® has developed some of the most important particle filter testing procedures, supported various international partners with retrofit programs and retrofit consulting and established a worldwide scientific network of manufacturers of components, systems, engines, vehicles and PN measurement devices as well as environmental, medical and technical research facilities specialized in the field of "air quality" and nanoparticle emissions control
- VERT organizes international conferences every year (i.e. the VERT Forum) and the ETH Nanoparticle Conference in Zurich
- > VERT has over 35 members including universities and research centres as associate partners

Tunneling is the extreme challenge "VERT-Filter for each Diesel"

4 tubes longest 57 km; total 152 km

Dicke Luft im Tunnel?

Die SUVA entwickelt im Projekt VERT Lösungen zur Abgasneinigung von

> G BUVA CNA INSAI

VERT scientific network

• 1997 first international ETH-NPC

workshop - 40 participants

- Today ETH-NPC is the annual event of UFP experts from science to technology
- VERT Forum every year:
- 14th VERT Forum on 22nd March 2024
- 15th VERT FORUM on 20 March 2025
- **!! Save the date!!** Location TBC
- <u>www.vert-dpf.eu/</u>

FOEN, SCS and ETH Zürich

Invite Chemical

Empa

VERT Milestones / Activities

- 2023 & 2024 DPF for Global Warming Mitigation
- 2022-2025 GPF Retrofit within EU-AeroSolfd-Projekt based on earlier VERT research
- 2022 DPF-Membrane for Marine heavy fuel oil application
- 2020 DPF for Virus Filtration
- 2016-2019 NPTI- the introduction of PN-count at idle for DPF-PTI control
- 2016-2018 High Emitter Analysis with Mexico Ciudad and EU-JRC
- 2015 Start of stakeholder process for Iranian national emission legislation to eliminate UFP
- 2015 Legislation for construction equipment with DPF for public projects in Berlin
- 2014 Euro VI legislation in Europe and Retrofit programs in China and Iran
- 2013 Retrofit programs in Bogotá/Colombia
- 2010 First VERT Forum Dübendorf with >60 participants
- 2010 Cooperation between Switzerland and China to introduce Low Emission Zones
- 2009 Legislation for construction equipment in Switzerland with DPF
- 2008 Retrofit programs in the Netherlands and Italy; Low Emission Zones in London, Berlin and Munich
- 2006 Low Emission Zones in all major Cities in the Netherlands
- 2005 DPF Retrofit program in Chile
- 2002 DPF duty for Diesels in all metal mines in the USA
- 2000 California Show Case Diesel Risk Reduction Program (Program to reduce diesel PM emissions in California by 75% by 2010 and 85% by 2020; London/United Kingdom starts to retrofit the transport system
- 2000 VERT-certified DPF for tunneling in Switzerland, Germany and Austria mandatory
- 1998 Boston: DPF duty for construction machines ("Big Dig")
- 1997 First VERT Filter List published, based on PN and secondary emissions
- 1996 Retrofit program of 20,000 city buses in Germany
- 1994 VERT-Project started: DPF developed for Swiss Tunneling NEAT

International Diesel Particle Programs worldwide: Santiago del Cile, Bogota, China, Iran, Israel, Berlin

DPF-Production in Europe + GPF from 2015

+ China,

+ India,

+ Israel,

+ Iran

+ Latin America

Soot Particles a double Risk because of

- very small <100 nm
- surface > 100 m²/g
- carrying toxics
- persistent in organism
- carcinogenic
- black colour
- →long life toxic aerosol weeks to month up tp 3500 m (→Jungfraujoch-Laboratory)

Particle Size matters....

- the weakest size range of filtration, the gap between diffusion and impaction
- …is the most sensitive size range of the lungs
-the most intensive emission range of engines and the typical size range of viruses

Particles 10-100 nm are 100 - 1000 x smaller than filter pores 10-20 µm

With ultrafine particle structures we can stepwise build a "membrane" covering the pore

*Source: Payne S. /Uni. of Cambridge; Study of diesel particulate bridging behavior with SEM; ETH-NPC 2012

Diesel particles are in the diffusion range

that makes them so dangerous

VERT Research Partners

Particle sizenm]

- Engine Emission Laboratory at Uni Biel AFHB
- Aerosol Laboratory at Uni FHNW
- Toxicology Laboratory Uni Bern Fribourg
- Bioerosol (Virus) Laboratory AMI Uni Fribourg
- () ·

ETH

PN Emissions from ICE

Diesel

Soot peak: ~**80 nm**; 10⁶-10⁷ Ash peak: 10 nm;

Petrol

Soot peak: ~**40 nm**; 10⁵-10⁸ Ash peak: 10 nm;

*Source Dr. LRubino et Al.- SAE Paper 2023-24-0114

UNCLASSIFIED - NON CLASSIFIÉ

Metrology Development became decisive

for Particle Counting by CPC and DC -Instruments for Laboratory, PEMS, Maintenance and Personal Sampling

Particle Filters Structure

Porous Ceramic Extrusion Metallic Sinter Structure **Ceramic Foams Metal Foams Ceramic Wire Structures Glas Fibre Cartridges** Metal Wire Structures **Deep Filtration and Membrane Structures** Low Temperature Paper Filters

REM, HJS

Ceramic wall flow multicell filter

invented 1979, now > 200 Mio in Diesel cars

- pore size 10-20 µm
- porosity 45-65%
- 200 cpsi
- >1 m² per 1 ltr bulk volume
- High in-flow speed but low face velocity some cm/s
- filtration efficiency >99%
- particle size 10 500 nm
- soot storage 10 g/ltr
- any shape and size
- temperature > 1000°C
- no aging over vehicle life
- no vibration problem
- easy to clean

Diesel vs Gasoline Particle Filters

	РМ	Engine out Gas T (deg. C)	O2 Conc.
GDI	LOW PN (1-10x10E+12 #/Km) PM (2-10 mg/Km)	HIGH (up t 800) deg. C)	LOW (0-20%)
Diesel	HIGH PN 10-100x10E+12 #/Km PM (10-50 mg/Km)	LOW (Max 400 deg. C)	HIGH (10-20%)

- Fast soot accumulation (Diesel) vs. Slow soot accumulation (Gasoline)
- Higher impact on back pressure (Gasoline)
- Since gasoline engines exhibits very dynamic exhaust heating & cooling - Thermal Shock Resistance is critical for <u>GPF</u>

Cordierite best option material so far for GPF

- ✓ Superior thermal shock performance (low CTE*)
- ✓ Better light off performance
- ✓ Isostatic strength & weight similar to substrate

Engine Exhaust Gas / DPF Retrofit

4 Engine Families – GPF Retrofit

HJS Tailpipe GPF retrofit (example)

Peugeot 3008, DI ,1,6L

VW Golf DI, 1,4L

FIAT, 500X PFI, 1,6L

OPEL Corsa PFI , 1,2L

Engine Exhaust Gas / SCR Retrofit

Exhaust System

Seite 16

ER

VERT-DPF Systems for Retrofit - passive & active

Passive systems are favoured, particularly for retrofit applications, because they require no integration with the engine, no source of energy other than the exhaust gases themselves, and no complicated control systems.

All active filter regeneration techniques operate by raising the temperature of the filter to around 600° C. This is the temperature at which the particulate matter (PM) collected in the filter, will combust in oxygen.

The **CRT** system is able to function in a wider range of conditions as passive system. Its advantage is most clearly seen in applications with low exhaust temperatures.

MDEC, October 2024 - Dr.LRubino

Soot combustion with O₂ or NO₂

CRT-Filter System Johnson Matthey Patent 1988

- Passive Regeneration The Continuously Regenerating Trap (CRT[®]) system is the most widely used diesel particulate filter (DPF) system in the world and is a patented Johnson Matthey technology
- It comprises an oxidation catalyst (DOC) followed by a diesel particulate filter (DPF)
- The oxidation catalyst removes CO and HC and oxidises some of the NO in the exhaust gasses to NO₂. This NO₂ then reacts with the particulate matter (PM) trapped in the filter, producing NO and CO₂ and cleaning the filter

Backpressure required OBD

Backpressure must be under Control

DPF°-Checi

Electronic Datalogging

Sensors for Backpressure and Temperatures

Alarm Indicator at the Drivers Seat

or remotely controlled

BP & Temperature monitoring

MDEC, October 2024 - Dr.LRubino

Some Engines are more sensitive

Typical DPF Failures

- Thermal and thermomechanical stress
 - Canning Failures
 - Vibration Failures
 - Result of engine and turbo failures
 - Failures due to **ash deposits** and ash sintering
 - FBC-dosing mistakes
 - Overheating during cleaning
 - Maintenance & Installation mistakes
 - Quality of fuels and lubricaion oils
 - Short term and long term failures
 - Failure statistics
 - Trouble-Shooting
 -

DPF Failure during Regeneration

MDEC, October 2024 - Dr.LRubino

Cracking and Melting

Particle number measurement can detect also small DPF failures !

Ash Accumulation during operation /DPF Blockage

• Ash cleaning every 1000-2000 operation hours must be well organized to protect workers from toxic dust and clean filters efficient to reach long filter life VERT VERT Filter Testing Certification & Quality Control

(Jak)

MDEC, October 2024 - Dr.LRubino

ERT VERT Filter Testing Certification & Quality Control

VERT CONCEPT:

- In Depth Testing of Exhaust Gas Filter Structures for Nanoscale Filtration (Physical Properties)
- In Depth Testing Chemical Phenomena in Exhaust Gas Filter Structures
- Testing a complete DPF system
- Type Approval of one filter per filter family
- Endurance Testing on Typical Vehicle Application
- Testing is Worst Case oriented
- Best Available Technology (BAT)

Measuring Particle Size, Surface, PN Number, EC/OC,

PM Mass & Gases NO, NO2, HC, CO, CO2, O2 + FTIR-Analysis..

- Before, After & during DPF Regeneration
- New Filter and after 2000 operation hours

VERT APPROVAL CRITERIA FOR PARTICLE FILTERS

Filtration Rate by Particle Count PC

 Filtration rate for solid particle number PCFE as defined by UN-ECE PMP according to EC-regulation 715/2007 [10], must be attained in average of all operating points, throughout the particle size range 20-300 nm.

A	В	c
2000	2007	2016
≥95%	≥97%	≥98%
≥90%	≥97%	≥98%
	A 2000 ≥95% ≥90%	A B 2000 2007 ≥95% ≥97% ≥90% ≥97%

 PCFE during regeneration the criterion is the ratio of averaged values during the whole regeneration process as specified by SN-277206 Regeneration time < 3 % operation time

	1	2	3
From year	2010	2012	2016
New state	≥ 60%	≥ 70%	≥80%
		Download	
2000 hrs.	≥ 60%	≥ 70%	≥80%

 Overall PN-peak reduction during free acceleration ≥ 95% The criterion is the ratio of the peak values Measurement as specified by SN 277206

SUMMARY

- Retrofitting machinery with DPFs, is one of the key strategies for protecting miners from harmful diesel particulate exposure
- For Health protection, All combustion engines must have Particle Filters to reduce particle number emissions
- Retrofit of all in-use Diesels with DPF
- Retrofit of all in-use Petrol Engines with GPF
- > Select only VERT certified filters VERT- Filterlist
- All VERT-certified filters ensure particle elimination, toxic gas reduction, no secondary emissions, low noise, long life, but ...it is important to check the engine operation conditions carefully (i.e. engine Backpressure requirement, Fuel Quality, Lube Oil Quality, Installation, Vibration, Heat etc.)
- Important is to install remote control Monitoring and Implement Inspection & Maintenance Rules
 - → This will generate Health Protection, Global Warming Mitigation, fast & cost effective solutions to Clean urban mobilityand above all in developing countries, where extremely dirty engines will be used for many years to come....

Acknowledgement

Co-authors – VERT Association Scientific Committee

https://www.vert-dpf.eu/

Dr. A. Mayer

Prof. J. Czerwinski

Mr. T. Lutz

^C THANK YOU FOR YOUR ATTENTION!

https://www.vert-dpf.eu/

aerosolfd-project.eu

Questions?

Lauretta.Rubino@vert-dpf.eu

Material Data of ceramic filter substrates

	Si-SiC	Recrist. SiC	Cordierite
Porosity [%]	46 (40-62)	36-45	60 (53-70)
Pore Size [µm]	20 (8-33)	8-10	25 (15-35)
Youngs modulus E [Mpa]	18	49	11
Bending Strength [Mpa]	21	53	1-8
Heat Expansion CTE	4.1	4.3	0.3
X10 ⁶ (40-800°C)			
Thermoshock resistance [°C] (cold water test)	1200	800	> 1200
Heat conductivity [W/mK]	31	53	0.8

VERT–certified DPF Systems for different targets and applications

Thermomanagment Tools are available in all modern vehicles for DPF-Regeneration, SCR-Support, Deposit Cleaning

- Intake Throttle
- HC-injection
- Catalyt Combustion
- Retarded injection
- Multiple Injection
- TC-Management
- EGR Managment
- Cooler Managment
- Electric Load

ERT Particle Filter Filtration & Backpressure

