Hydrogen roadmap update

Mine Vehicle Power Train Conference – Sudbury, Oct 2024

Pejman Nekoovaght and Gilles LeBlanc

CanmetMINING

Outline

- Brief background overview
 - Hydrogen roadmap development
 - Project definition
- CSR gap analysis
- Hydrogen value chain and layouts on a mine site
- Risk analysis and mitigation measure identification

Progress overview

Priorization criteria

- Consulting the industry through the CHIM-AC meetings
 - Roadmap toward 2030
 - Utilization methodology and applications
- Support development of Codes, Standards, and Regulations

Progress overview

CMIN scientific involvement

Define and lead on new projects

- Hydrogen Internal Combustion Engine for heavy-duty mining mobile equipment
- Underground mine ventilation heating with a blend of 20% Hydrogen and 80% natural gas
- Infrastructure (production/storage, distribution and refueling) and safety
 - Develop appropriate guidelines to support development of Codes, Standards, Regulations
 - \odot Risk register, analysis and mitigation measures
- \circ CSR gap analysis of hydrogen value chain

exemplary model, not shown SCR-H₂-Catalyst

CSR Gap Analysis on H₂ Value chain in Mining

Hydrogen Dispenser

- High flow rate fueling dispensing system
- Integrated thermal management system
- Distribution piping system infrastructure

Mobile equipment (ICE or Fuel cell)

- Gaseous or Liquid hydrogen storge on-board
- Safety standards for underground application
- Emission certification

Underground mine ventilation heating with hythane

- Impact on existing infrastructure
- Energy assessment
- Air quality

Process sections of H₂ value chain on a mine site

Supply

- Production on site
 - Electrolysis
 - SMR-Transportable Nuclear Power Plant (TNPP)
- Truck delivery (gas/liquid)
- Pipeline network

Storage

- Back up storageHigh/low
- pressure reservoirs
- On-board vehicle storage

Distribution

- Refueling station
- Surface/under ground
- Distribution system from surface to underground stations
- Distribution of piping underground

<u>Usage</u>

- Mobile equipment
- Electricity generators
- Heating applications
- Processing purposes

6

H₂ Process value chain on a mine site

Underground mining layout

- Mobile equipment,
 - \circ Storage tank
 - Distribution pipes and valves
 - Power source (ICE, Fuel Cell)
- Dispensers at refueling station,
 - Dispenser components
 - Connecting hose
 - Compressor
 - Storage tank
- Piping system for gas distribution and delivery through,
 - o Main shaft
 - Exhaust shaft/raise
 - Main galleries
 - o Ramp
 - o Ventilation raise
 - Dedicated boreholes
 - Tube trailer truck via main shaft or ramp
 - Swapping tanks by truck via main shaft or ramp

Example of distribution through the main shaft

Distributing high pressure gas from surface to underground

Risk register and analysis criteria:

- Access point from surface to underground
 - o Main shaft
 - Exhaust shaft/raise
 - \circ Main galleries
 - o Ramp
 - Ventilation raise
 - Dedicated boreholes
- High flow rate in the event of leakage
- Component level leakage risk

Distributing low pressure gas from surface to underground

Risk register and analysis criteria:

- Access point from surface to underground
 - o Main shaft
 - Exhaust shaft/raise
 - \circ Main galleries
 - o Ramp
 - \circ Ventilation raise
 - Dedicated boreholes
- Low flow rate in the event of leakage
- Component level leakage risk
- Intermediate, high pressure and stationary reservoir underground

Truck delivering and in-situ refueling

Risk register and analysis criteria:

- Access point from surface to underground
 - Dedicated boreholes
 - Tube trailer truck via main shaft or ramp
 - Swapping tanks by truck via main shaft or ramp
- High flow rate in the event of accident/leakage
- Component level leakage risk
 O Delivery vehicle system design
 - Refueling system connection design

Risk analysis methodology and mitigation measure development

Assumption factors taken into account:

12

- Domino effect
- Based on available statistical database (non-mining related)

Canadian Nuclear Laboratories

Frequency levels

Level	Description	Definition	Frequency
0	IMPROBABLE	Possible but may not be heard of or maybe experienced world wide	≤10 ⁻⁴ per year
1	REMOTE	Unlikely to occur during lifetime/operation of one sub-system	10 ⁻³ - 10 ⁻² per year
2	OCCASIONAL	Likely to occur during lifetime/operation of one sub-system	10 ⁻² - 10 ⁻¹ per year
3	PROBABLY	May occur several times in the sub-system	0.1 - 1 per year
4	FREQUENT	Will occur frequently at the sub-system	> 1 per year

13

Used standard methods to analyze the risk level based on existing incidental data base.

	Frequency of occurrence (per year)						
Consequence Severity	0-Improbable	1-Remote	2-Occasional	3-Probably	4-Frequent		
	(<0.0001)	(0.01-0.001)	(0.01-0.1)	(0.1-1)	(>1)		
0-No Impact	LOW	LOW	LOW	LOW	LOW		
1-Minor damage	LOW	LOW	LOW	LOW	MEDIUM		
2-Damage	LOW	LOW	LOW	MEDIUM	HIGH		
3-Major Damage	LOW	LOW	MEDIUM	HIGH	HIGH		
4-Severe/Catastrophic	LOW	MEDIUM	HIGH	HIGH	HIGH		

Definition of Risk

Material

No material damage

Minor material damage

Minor structural damage;

minor production influence

Considerable structural

damage; production

interrupted for weeks

Loss of station and

production interrupted for

months

High (H) Medium (M) Low (L)

Risk criticality is too high and not acceptable. Redesign or other changes should be introduced to reduce the criticality May be acceptable but redesign or other changes should be considered to ensure risk is as low as reasonably practicable (ALARP) Risk criticality meets acceptance criteria and further risk reducing measures are not necessary

Description

NO DAMAGE

MINOR DAMAGE

DAMAGE

MAJOR DAMAGE

People

No injury, annoyance,

disturbance Minor injury,

annovance, disturbance

time injury

Permanent disability

Prolonged hospital

treatment

SEVERE/CATASTROPHIC One to several fatalities

Environment

No environmental damage

Minor environmental damage

short duration < 1 month

Time for restitution of

ecological resource < 2 years

Time for restitution of

ecological resource such as

recreation areas, ground water

>2 years

Medical treatment; Lost Local environmental damage of

Severity levels

Level

0

1

2

3

4

Risk register system definitions and assumptions

System components for above/underground ground H₂ production, storage and dispensing

- System component above ground
- Distribution component from above ground to refueling station underground
- Refueling station component underground
- Mobile equipment component underground

Conclusion

- 1. In general, the risk level of hydrogen utilization on a mine site is low, since all components involved are known technologies
- 2. Identified necessary simulation/experimental project to be studied and evaluated further for a mining application
- 3. The risk analysis activity demonstrates that the risk level for certain components can be lowered significantly by introducing some mitigation measures
 - On-board reservoirs safety
 - Managing and adapting operation
 - Safety devices for emergency shot down hydrogen circulation
 - Improve design of PTRV to adapt mining environment
 - Dedicated borehole for hydrogen distribution

Canada

Pejman.Nekoovaght@nrcan-rncan.gc.ca

Natural Resources Ressources naturelles Canada

Canada