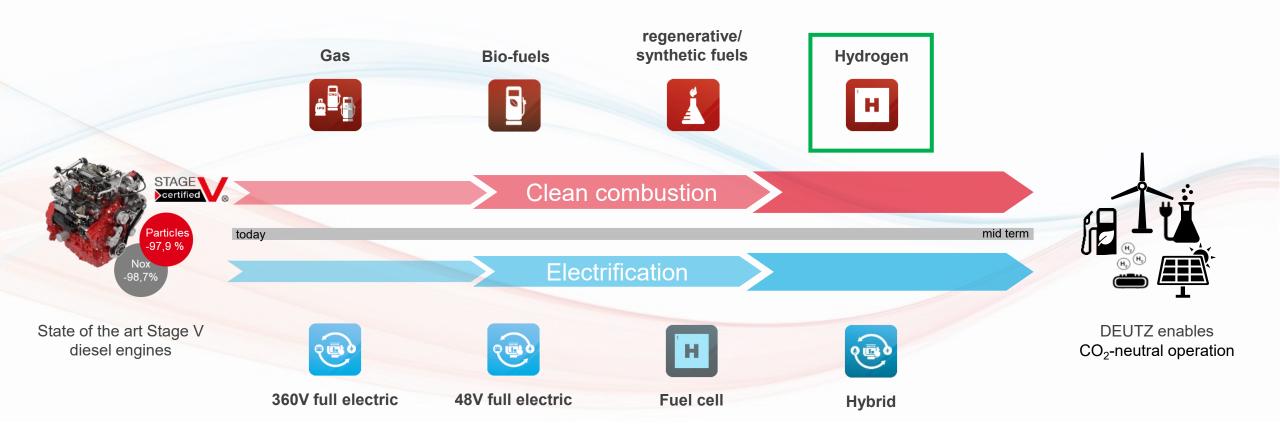


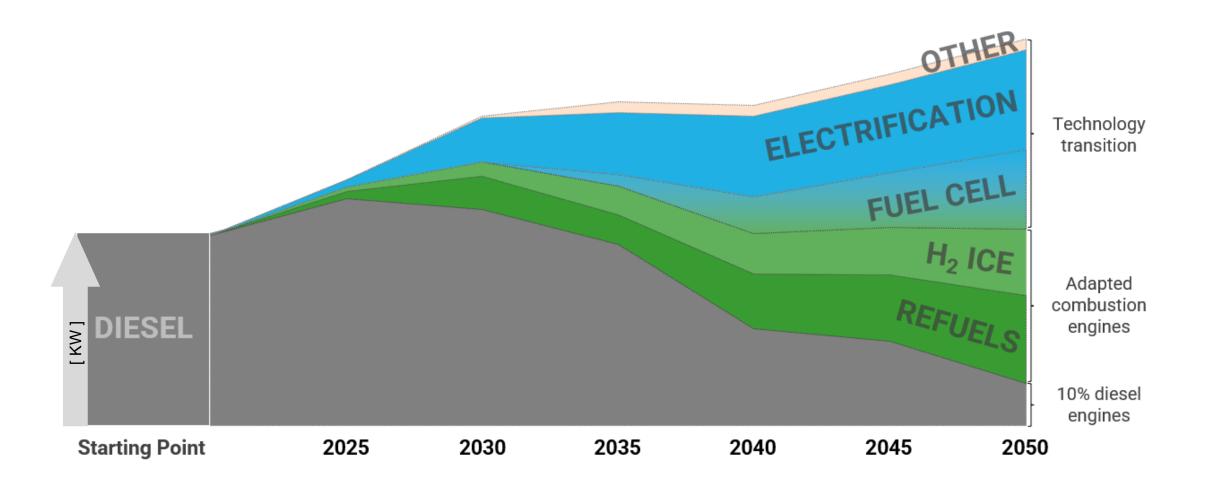
H2 ICE – A Solution for a CO2-free Powertrain


- DEUTZ Hydrogen Engine

MDEC 2024

- DEUTZ Overview
 - Dual Alternative Energy Strategy for CO2 Neutrality
- H2 Fuels and combustion processes
 - Fuel sourcing and standards
 - Base thermodynamic cycles
- DEUTZ H2 Engine
 - Technical details
 - Emissions summary
- Regulatory Framework (theoretical cycles)
 - EPA and CARB regulatory approach (Current regulations and future Tier 5)
- H2 Safety Standards

Evolution from Clean towards CO_2 -neutral propulsion systems DEUTZ H2-ICE



Sustainable Drive Portfolio for the Future Construction Site

Projected Technology Allocation Through 2050

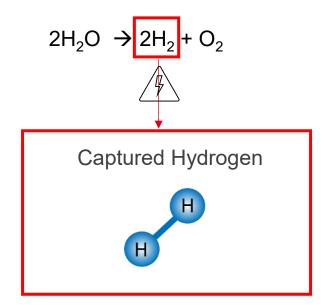
Hydrogen Fuels and Combustion Processes

Hydrogen (H₂) Fuels Procurement Color Palette



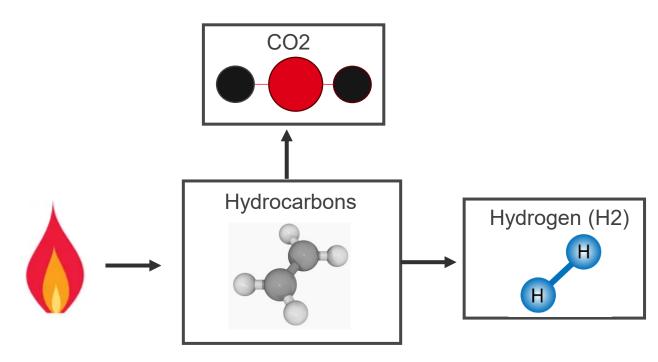
- Hydrogen Rainbow Various color designations are associated with the vast array of hydrogen production processes
- Example H2 Fuel Standards:
 - DIN EN 17124
 - ISO 14687 Type I Grade D

H2 Color Designation		Process	Source		
Green	Yellow*	Electrolysis	Renewables (*Solar)		
Pink		Electrolysis	Nuclear		
Gray	Blue**	Steam Reformation	Natural Gas (** with carbon capture)		
Turquoise		Pyrolysis	Natural Gas		
Black		Gasification	Coal		


- Not all H2 is produced in an environmentally friendly method
- Consideration should be made as to the energy equity of the fuel that is being produced

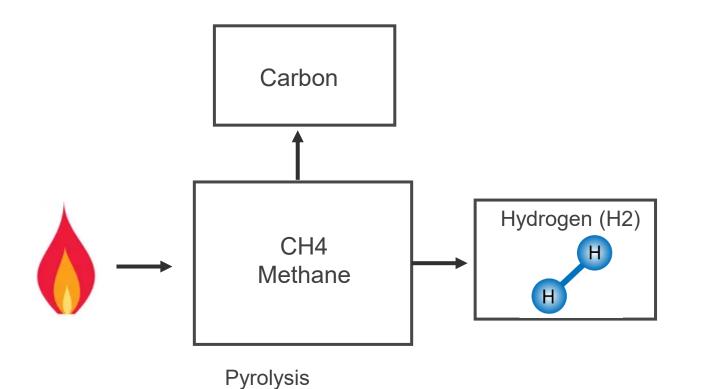
Hydrogen (H₂) Fuels Green (and yellow) hydrogen

- Green Hydrogen is generated by electrolysis of water via the use of electricity generated by renewable sources
- Renewable sources include hydroelectric power to produce electricity (abundant in Canada)
- Yellow is a subset being primarily generated by the sun (Solar)



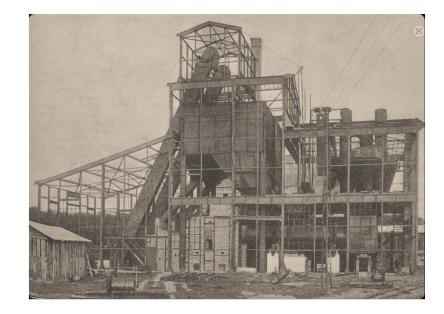
Hydrogen (H₂) Fuels Grey hydrogen

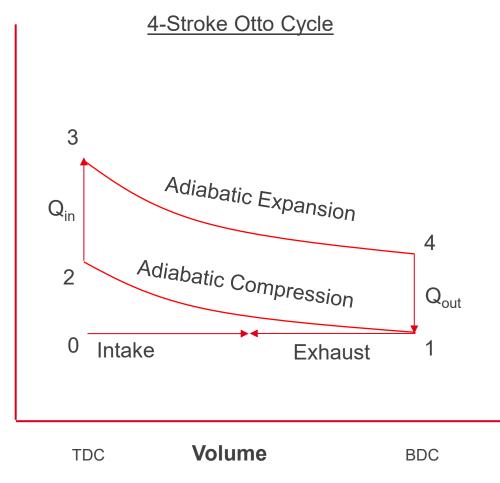
- Grey Hydrogen is generated by processing of fossil fuels. This process is usually the steam reformation of natural gas into H2 and CO2
- Resulting CO2 is released into the atmosphere and compounds the greenhouse effect


Steam Reforming

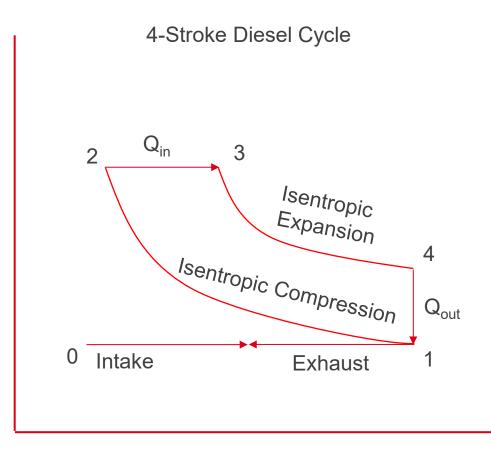
Hydrogen (H₂) Fuels Turquoise hydrogen

- Turquoise Hydrogen is generated usually by the processing of methane. This process is known as methane pyrolysis.
- In cases where the heat supply for the high-temp machinery involved is renewable, and the methane is not a fossil derived product, the process can have a lower CO2 and environmental impact

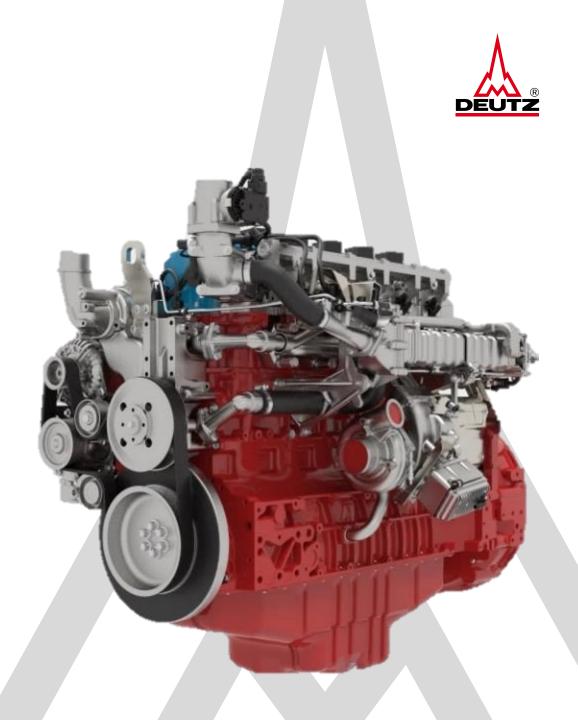

Hydrogen (H₂) Fuels Black hydrogen


- Black Hydrogen is generated by <u>coal gasification</u>
- Coal is heated red hot and quenched with water vapor

- H2 and CO are released and can be further 'refined' if a higher purity of H2 is required
- Purification requires Sulfur base compounds and results in CO2 and more pure H2


Typical SI Combustion Principle

- Idealized Combustion process: 2H₂ + O₂ → 2H₂O*
- Typically combusted in a constant volume process (Otto/Miller cycle)
- Process steps:
 - 0-1 Intake Stroke
 - 1-2 Compression Stroke
 - 2-3 Heat input (e.g. Spark Plug)
 - 3-4 Power Stroke
 - 4-1 Heat Rejection
 - 1-0 Exhaust Stroke


Typical CI Combustion Principle

Volume

- Typically diesel fuel combusted in a <u>constant Pressure</u> process (diesel cycle)
- Process steps:
 - 0-1 Intake Stroke
 - 1-2 Compression Stroke
 - 2-3 Heat input (spontaneous combustion)
 - 3-4 Power Stroke
 - 4-1 Heat Rejection
 - 1-0 Exhaust Stroke

DEUTZ Hydrogen (H₂) Engine

DEUTZ TCG 7.8 H2 Internal Combustion Engine

Applications

Off-Road applications

- Excavators
 - Tractors & agricultural machinery
 - Mining

- Generators (GenSets)
- Block heat and power plants

Rail applications

- Regional trains
- Special vehicles

City and intercity buses*

- Medium range buses, 12m
- Complement to BEV city centre fleets

Delivery trucks*

- 16-18t trucks
- delivery traffic

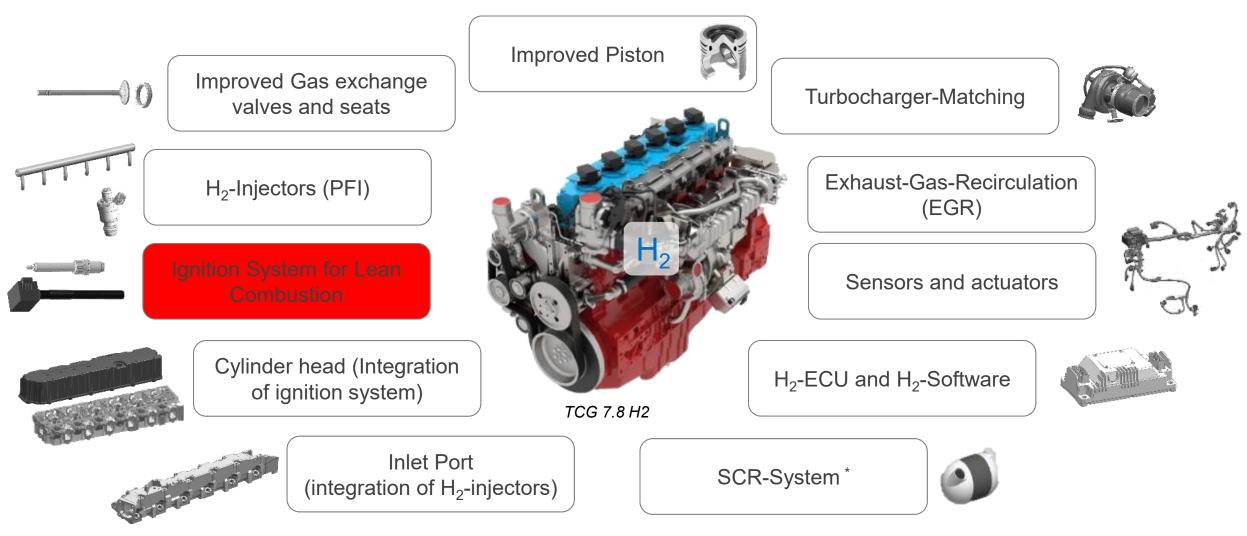
Marine applications**

- * On development request
- ** Possible future development

DEUTZ TCG 7.8 H2

Advantages of a Hydrogen engine

DEUTZ TCG 7.8 H2


- CO_2 -free Combustion: $2H_2 + O_2 \rightarrow 2H_2O^*$
- Economic alternative to other technologies
 - Attractive overall cost perspective (Initial invest is lower than with Fuel Cell drive)
 - Retrofit existing fleets possible (same drive train, additional H2supply/tank plus safety)
- Could be industrialized in a short time with proven supplier infrastructure and existing production capacities
- Suitable for low H₂-gas qualities (lower costs, less processing than with fuel cells)
- High reliability grounded on proven base engine tech.
- Increasing H₂-infrastructure, available Maintenance-network for combustion engine

*) < 1 g CO₂/kWh * Idealized

DEUTZ TCG 7.8 H2

Hydrogen engine Technical changes

TCG 7.8 H2 – Emission Performance

Preliminary Results from Standard Test Cycles

• C1 and RMC data taken post SCR (tailpipe out), no DPF

			NO	NO2	NOx	HC	СО	PM	CO2	02	PN
			g/kW-hr								
5	Test Cycle	C1	0.012	0.005	0.017	0	0	0.001	5.0		
. 560kW)	Test Cycle	RMC	0.011	0.009	0.020	0	0	0.001	4.9	581	2.22E+09
/ (130 -	US EPA limits (1039, 1048)	Tier 4 - Cl			0.40	0.19	3.5	0.02			
ategory		Tier 2 - Large SI			0.8		20.6				
Power Category (130	EU ST V	CI			0.4	0.19	3.5	0.015			1.00E+12
Pc	Limits	SI			0.4	0.19	3.5	0.015			1.00E+12

- Ambient air is 0.04% (~421ppm) CO2 which is measured at tailpipe out
- CO2 contribution from DEF (Diesel Exhaust Fluid): H_2N -CO- $NH_2 \rightarrow CO_2$

*Emission data presented are preliminary, not part of a certification

Key Message

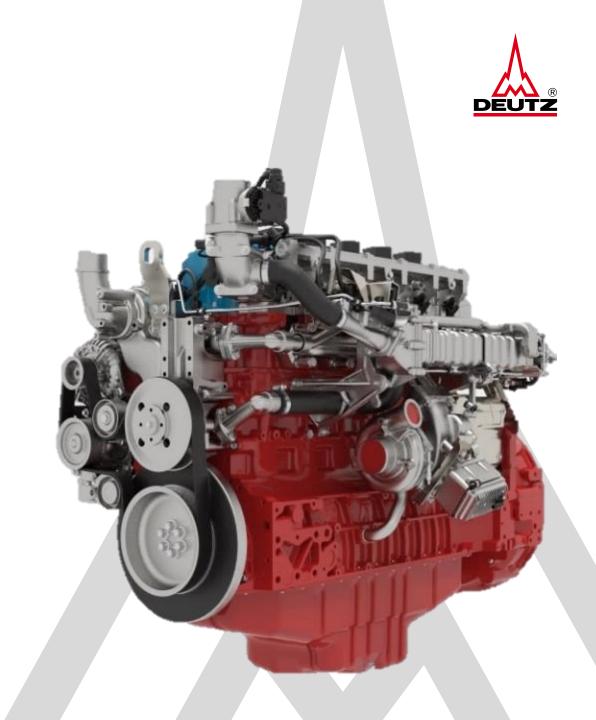
- All regulated emissions are within current US and EU
 - H2 is considered CO2-free since the fuel does not contain Carbon

TCG 7.8 H2 – Emission Performance

Comparison with Underground Mine Ventilation Requirements

C1 data

		kW @ RPM	After-	NOx	HC	СО	РМ	CO2	Ventilation (cfm)		
			treatment	g/kW-hr							
CI - Tier 3	TCD 2013 L06	190 @ 2300	No	3.8	0.12	0.41	0.097	756	10,700		
CI - Tier 4	TCD 6.1 L6	180 @ 2300	Post	0.08	0.012	0.01	0.012	773	11,000		
CI CI	TCD 7.8 H2*	220 @ 2200	Pre	0.51	0	0.023		4.3	500		
SI			Post	0.02	0	0	0.001	4.9	500		


*Emission data presented are preliminary, not part of a certification or approval

Key Message

 Hydrogen ICE present opportunity to reduced ventilation rates and compliance to low criteria emissions standards

H2-ICE Regulatory Framework (U.S.)

Engine Certification Path(s) per Current U.S. Federal Law

Compression Ignition (CI) or Spark Ignition (SI)

SI path – 40 CFR 1048

Regulations of part 1048 apply for all new, <u>spark-</u> <u>ignition nonroad engines</u> with maximum engine power above 19 kW

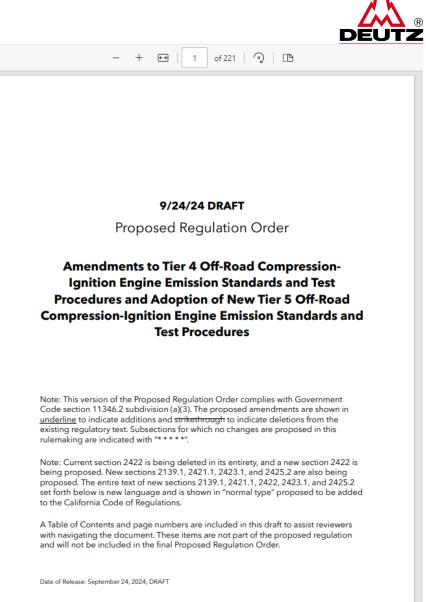
Spark-ignition means relating to a gasoline-fueled engine or any other type of engine with a spark plug (or other sparking device) and with operating characteristics significantly similar to the theoretical Otto combustion cycle. Spark-ignition engines usually use a throttle to regulate intake air flow to control power during normal operation.

Latest standard is Tier 2. No new regulations are expected

CI path – 40 CFR 1039

The regulations in this part 1039 apply for all new, compression-ignition nonroad engines

Compression-ignition means relating to a type of reciprocating, internal combustion engine that is not a spark ignition engine.


Latest standard is Tier 4, with CARB Tier 5 expected in 2029+

- EPA regulations are fuel-agnostic
- In the EU, all fuel and combustion cycle types within the 56 560kW category must meet the same emission standard

CARB Tier 5 Development into Latest Regulation Order

Major Updates from Prior Concept Phases

- California Air Resources Board (CARB) rulemaking mostly applicable to nonroad CI engines (Diesel)
- Increased stringency in criteria emissions (NOx, PM, etc.), diagnostic requirements among others
- However...
- Includes H2-ICE certification pathway for California
 - Not considered a Zero Emissions by CARB. Zero Carbon concept is not mentioned (concept may not exist)
 - Proposed CI engine certification and compliance path

H2-ICE Certification Pathway

CARB Only (not a Federal EPA Proposal)

- H2-ICE to be subject to CI standards and all requirements if any of the following apply starting MY2029 (Certified to Tier 5):
 - 1. Engine with boosted air induction (turbochargers, superchargers etc.)
 - 2. Engine is designed to operate in equipment historically powered by off-road CI engines
- Exception:
 - H2-ICE certified to CI shall not be used in eq. powered by off-road spark ignition (SI) if the eq. is subject to large SI (LSI) forklift phase out requirements
- H2-ICEs do not meet the CARB's definition of ZE
- Credits
 - H2-ICE would not generate CO2 credits (CA-ABT or ZE credits)
 - H2-ICE would qualify for CA-ABT credits for criteria pollutants (NOx and PM)
 - H2-ICE possibly subject to OBD or extended DF testing

H_2

Tank Standards, Storage, and Safety

Hydrogen Tank Storage and Standards

H2 Physical Properties for Storage

Η

- Mass Basis:
 - Gasoline = 44 MJ/kg vs. H2 = 120 MJ/kg -
- Volume basis
 - Gasoline = 32 MJ/L vs. LH2 = 8 MJ/L-
- LH2: Hydrogen in liquid form requires a temperature of -252.8 deg C at 1 atm
- LH2 has a volumetric density of 71 kg/m³

200 - 250 bar, = 500 kg, Umgebungstemperatur

500 bar, = 1.000 kg, Umgebungstemperatur

1 - 4 bar, = 4.000 kg, tiefkalt

Various storage and transport solutions are necessary for the liquid and gas forms of H2

Hydrogen Tank Storage and Standards

H2 Tank Systems

Туре І	All-metal cylinder
Type II	Load-bearing metal liner hoop wrapped with resin-impregnated continuous filament
Type	Non-load-bearing metal liner axial and hoop wrapped with resin-
III	impregnated continuous filament
Type	Non-load-bearing, non-metal liner axial and hoop wrapped with
IV	resin-impregnated continuous filament

-Application areas

Type I Tank

Core-Module Rack

Type IV Tank

H2 Fuel Storage Tank Requirements

US and EU H2 Tank System Standards

H2 related	Agency/ Org	Regulation or Standard			
General	OSHA	29 CFR 1910.103			
	NFPA	NFPA 55			
Storage	SAE	SAE J2579			
	ANSI, CSA	HGV 2:21			
	ISO	ISO 19884-3			
		ISO 19881:2018			
		ISO 16111			
	UN ECE	TRANS/180/Add.13			
	NFPA	NFPA 2 – 2023			
	ASME	Boiler and Pressure Vessel Code (BPVC)			
Safety	ISO	ISO/TR 15916:2015			
Transportation by Road	US DOT and CE	UN/ISO 11119-2. CE-PED – Module B and D			
H2 refueling connection devises		ISO 17268:2020			
Piping, tubing, and fittings	OSHA	ANSI B31.1-1967			
	NFPA 2	NFPA 2 – 2023			

- Basic collection of standards that relate to H2 tanks and storage
- Standards cover various aspects from tank types, connections, fittings among others

Zero Emissions vs. Zero Carbon Emission

- H2 ICE can be more efficient than diesel with near zero or zero-carbon emission acceptance
 - Still some carbon emissions from lubricating oil and DEF
 - Emissions of NOx from high temp/press combustion. Emissions control could be needed (SCR)
- Smaller aftertreatment system footprint compared to Diesel

Take-away thoughts

- Fuels Sourcing Improvements to be made within the fueling infrastructure and sustainable procurement
- H2 derived from Grey/black methods could be worse than diesel when life cycle CO2 (or GHG) emission are concerned
- When considering engine-out criteria pollutants, H2-ICE has lower emission compared to Diesel-ICE
- Gas vs. Liquid H2 storage and safety considerations

Thank you!