

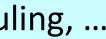

# Electrically Heated Mixer (EHM™) for Peak SCR Efficiency, Maximum NOx Reduction

# MDEC Conference

**Emissol LLC** 

21-23 October 2024





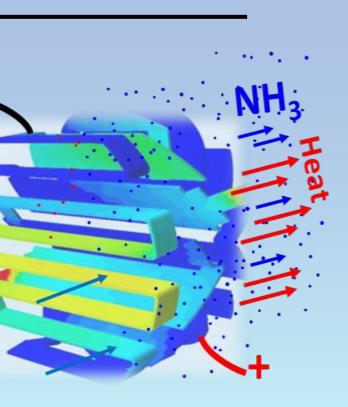

Copyright Emissol LLC ©. All Rights Reserved.

## Why is Meeting Ultra-Low NOx Difficult?

## **Motivation**

- Achieving Extremely-Low, Near-Zero NOx Emission
- Severe Health Concerns in Closed Spaces, e.g., in Mines Challenges
- Higher NOx Reduction Often Needs More Urea, Yielding:
  - **Financial Concerns due to:** Deposit **7**; Damage to AFTS, Warranty Risks **7** ullet
  - **Health Risks due to:** NH<sub>3</sub> Slip 7 •
  - Environmental Concerns due to: N<sub>2</sub>O *¬*
- **Operational Challenges:** Rapid-Heat up in Cold Start
- Total Cost of Ownership: More Urea Injection Means More Cost
- **In-Use Compliance Challenges:** Due to Catalyst Aging, Injector Fouling, ...




## **A New Solution: Electrically Heated Mixer (EHM<sup>™</sup>)**

- Peak SCR Efficiency Needs
  - Heat & NH<sub>3</sub>
- EHM is Two Units in One: Heater & Mixer
- **I. Rapidly Heats Up SCR** (e.g., in Cold-Start, ...)
- II. Its Heated Surface
  - Accelerates Thermolysis, Hydrolysis Reactions
  - Produces More  $NH_3 \nearrow$ , Important in
    - Low Load Engine Operations
    - **Cold Ambient**
    - Ideal for Urea Injection below, or about, 100 °C (for stronger NH<sub>3</sub> storage in SCR)

# EHM Forms Ammonia Nearly Independent of Exhaust Temperature

Copyright Emissol LLC ©. All Rights Reserved.

DEF



# EHM For Ultra-Low Tailpipe NOx

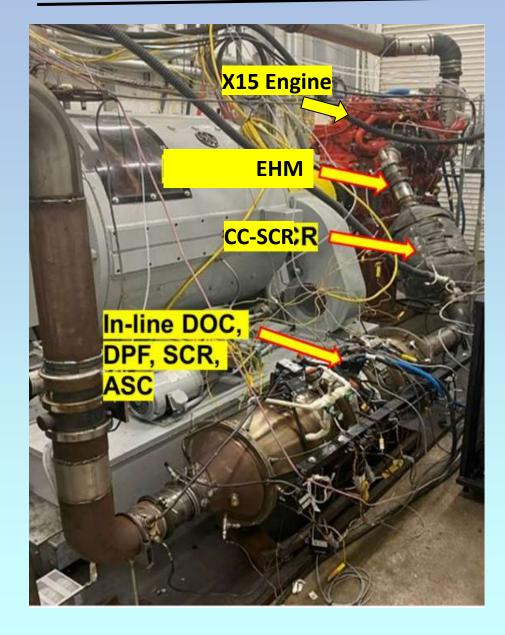
### **Joint Demonstration Emissol, Eaton & SwRI**



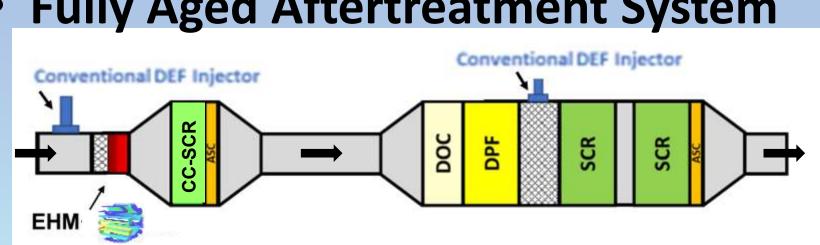
- Using Fully-Aged Aftertreatment System











Copyright Emissol LLC ©. All Rights Reserved.

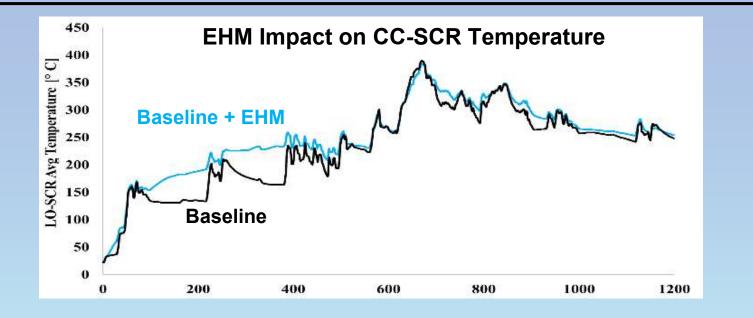


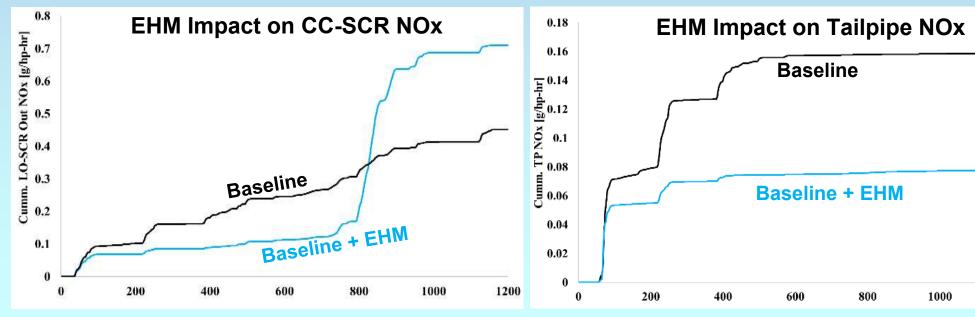
# Set-up



### **Fully Aged Aftertreatment System**




### Tested Various Cycles


- Cold & Hot FTP
- Low-Load Cycle (LLC)
- Cold, Hot WHTC
- **Other Cycles**

Published in: "Meeting Future NOx Emission Regulations by Adding an Electrically Heated Mixer". Frontiers in Mechanical Engineering. Vol. 8. 2022



### Cold FTP Cycle: EHM Impact on CC-SCR, Tailpipe NOx







Copyright Emissol LLC ©. All Rights Reserved.

#### UNCLASSIFIED - NON CLASSIFIÉ

1200

### Cold FTP Cycle

| Configuration          | <b>Tailpipe NOx</b><br>(g/hp-hr) |  |
|------------------------|----------------------------------|--|
| Baseline AFTS          | 0.159                            |  |
| Baseline AFTS with EHM | 0.078 ↓ NOx Emission             |  |

### **Hot FTP Cycle**

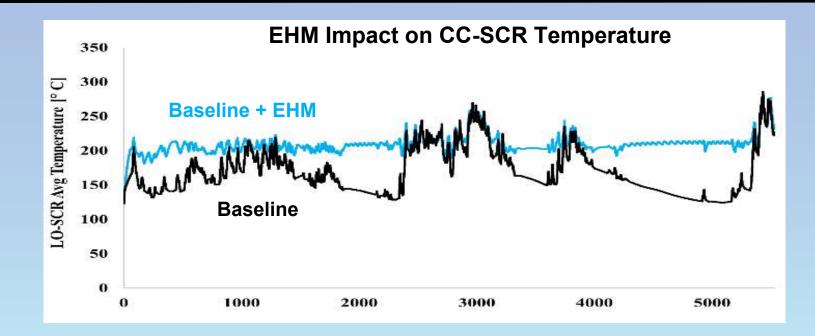
| Configuration          | Tailpipe NOx<br>(g/hp-hr)           |  |
|------------------------|-------------------------------------|--|
| Baseline AFTS          | 0.043                               |  |
| Baseline AFTS with EHM | 0.008 ↓ <mark>5.5X Lower N</mark> O |  |

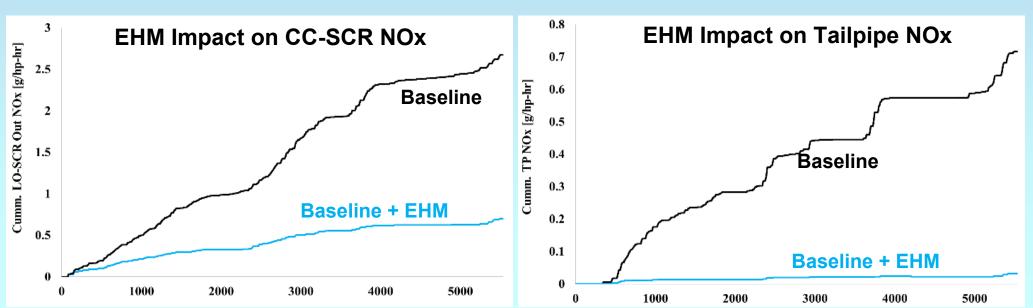
### Full FTP Cycle

| Configuration                  |                        | <b>Tailpipe NOx</b><br>(g/hp-hr)   |  |
|--------------------------------|------------------------|------------------------------------|--|
|                                | Baseline AFTS          | 0.060                              |  |
| 📑 Emissol                      | Baseline AFTS with EHM | 0.018 ↓ <mark>3.3X Lower NO</mark> |  |
| Emissol is Emission Solutions! | Convrigh               |                                    |  |

**Copyright Emissol LLC ©. All Rights Reserved.** 

#### UNCLASSIFIED - NON CLASSIFIÉ




elow World's <u>Lowest</u> NOx Targets: 2027 EPA/ California HD On-Road 2029 California HD Off-Road (Tier5)



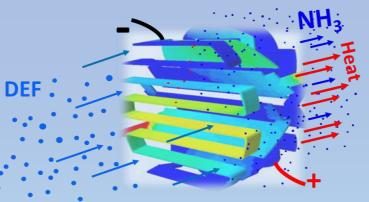
### Low-Load Cycle: EHM Impact on CC-SCR, Tailpipe NOx





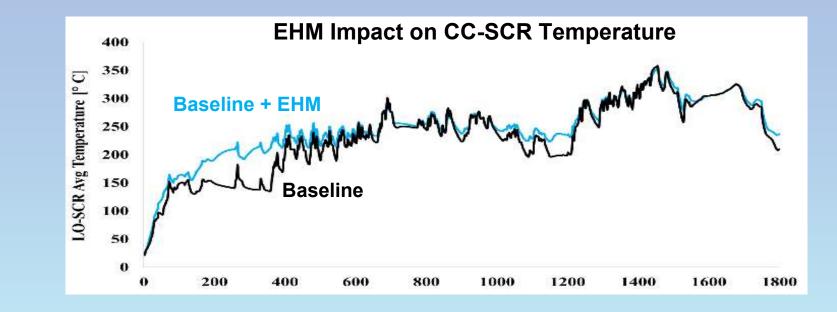


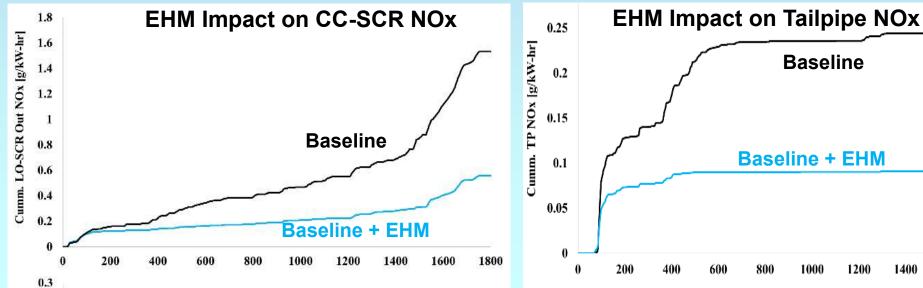
Copyright Emissol LLC ©. All Rights Reserved.


### **Low-Load Cycle**

| Configuration          | Tailpipe NOx                     | ••••  |
|------------------------|----------------------------------|-------|
| Configuration          | (g/hp-hr)                        |       |
| Baseline AFTS          | 0.716                            |       |
| Baseline AFTS with EHM | 0.032 ↓ <mark>22X Lower</mark> № | NOx E |




Copyright Emissol LLC ©. All Rights Reserved.


#### UNCLASSIFIED - NON GLASSIFIÉ



### **Emission**

### World Harmonized Transient Cycle/ WHTC: EHM Impact on NOx







**Cold WHTC** 

Copyright Emissol LLC ©. All Rights Reserved.

### UNCLASSIFIED - NON CLASSIFIÉ

1800 1600

## Cold WHTC (World Harmonized Transient Cycle)

| Configuration          | Tailpipe NOx                     |  |
|------------------------|----------------------------------|--|
| Configuration          | (g/hp-hr)                        |  |
| Baseline AFTS          | 0.245                            |  |
| Baseline AFTS with EHM | 0.091 ↓ <mark>2.5 X Lower</mark> |  |

### Hot WHTC

| Configuration          | <b>Tailpipe NOx</b><br>(g/hp-hr)          |  |
|------------------------|-------------------------------------------|--|
| Baseline AFTS          |                                           |  |
| Baseline AFTS with EHM | 0.125<br>0.001↓ <mark>125X Lower N</mark> |  |
|                        |                                           |  |

### **Full WHTC**

|   | Configuration        |
|---|----------------------|
| _ | <b>CONTIGUISTION</b> |
|   | Communation          |
|   |                      |

Baseline AFTS Baseline AFTS <mark>with EHM</mark>



Copyright Emissol LLC ©. All Rights Reserved.

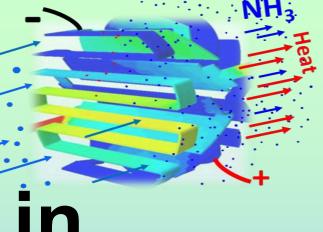
**Tailpipe NOx** 

(g/hp-hr)

0.142

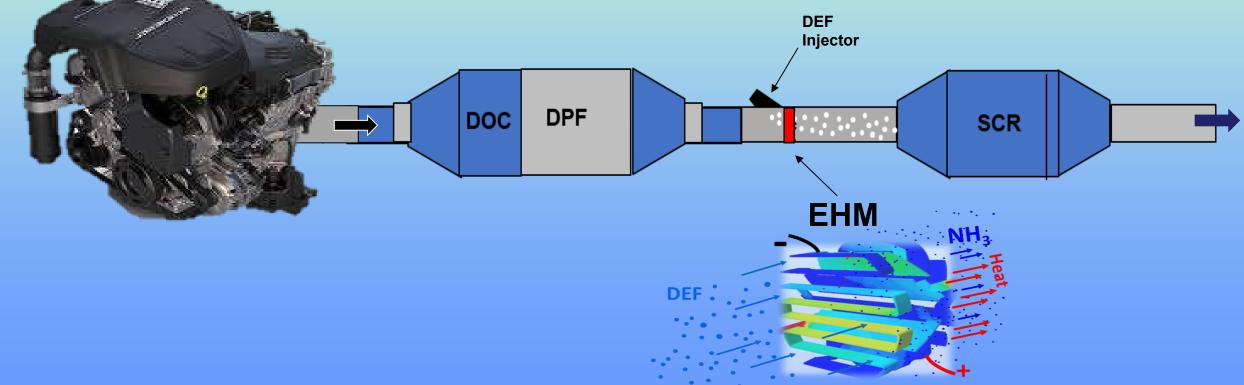
**0.014** 








# EHM for Higher NOx Reduction in **Challenging Cycles: Low-Temperature & Highly Transient** (Exhaust Temp. < 200 ℃)

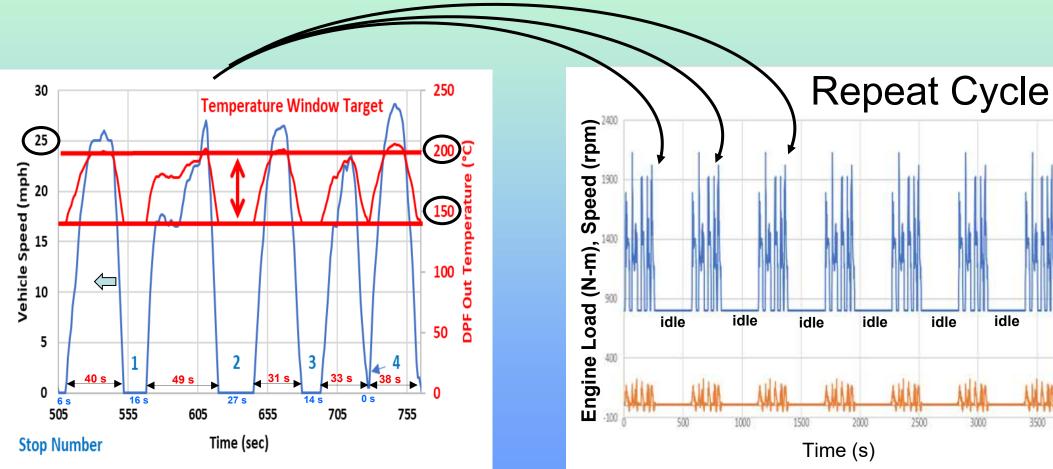



Copyright Emissol LLC ©. All Rights Reserved.



## EHM for Peak SCR Performance: Low Temp., Highly Transient Cycles

- 3 Lit. Diesel Engine
- AFTS: DOC-DPF-SCR
- EHM positioned pre-main SCR






Copyright Emissol LLC ©. All Rights Reserved.

## **Highly Transient Cycle & is Low Temperature**

Pre-SCR Temperature Constantly Maintained Below 200 °C

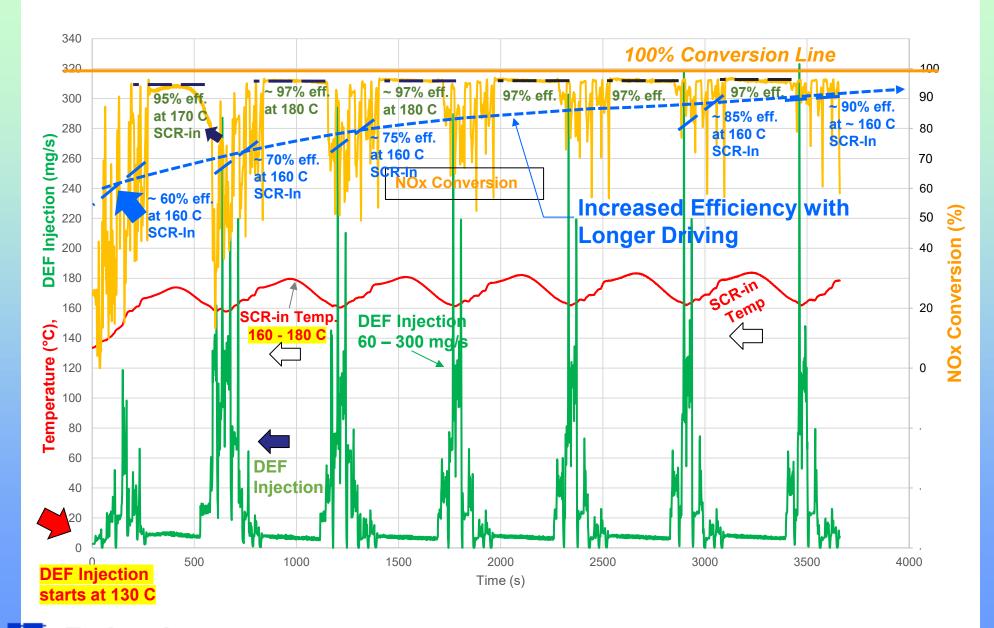






### Highly Transient Cycle: SCR Has Stored Ammonia






#### Copyright Emissol LLC ©. All Rights Reserved.

#### **UNCLASSIFIED - NON CLASSIFIÉ**

# 95 – 99% NOx Conversion at Stops (190 °C) Up to 80% NOx conversion in Transients (160 °C) Higher Efficiency as Cycles Continues

## High Transient Cycle - SCR Has Without Stored Ammonia



Emisso

Emissol is Emission Solutions!

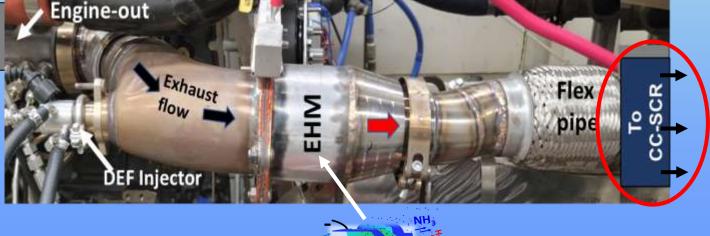
### EHM Enables:

- ~ 90% NOx conversion in Transients (160 °C) **Higher Efficiency as Cycles Continues**
- **95 9%** NOx Conversion at Stops (**180** °C)

Copyright Emissol LLC ©. All Rights Reserved.

# **EHM for Deposit Mitigation**

Join Emissol - Isuzu Demonstration


Isuzu 4HK1

5.2L lit.



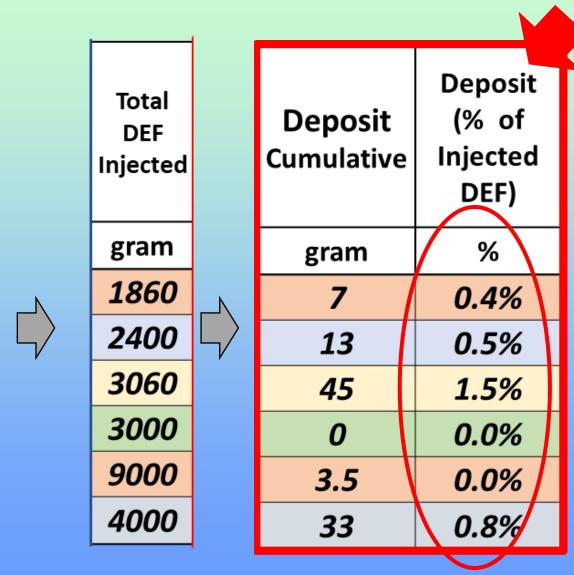
**GOAL: Use EHM to Avoid Deposit** 










Copyright Emissol LLC ©. All Rights Reserved.

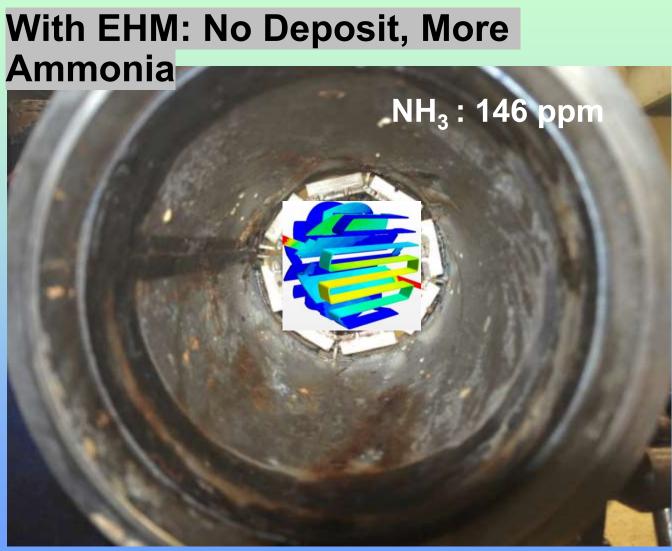
### ~ 100 Hours of Urea Injection

SAE 2024-01-2377

### • Deposits only ~0 - 1% of Injected DEF

| Operation Point /<br>OP | Run<br>Time | Exh<br>Flow | Exh Temp | DEF Inj.<br>Rate |
|-------------------------|-------------|-------------|----------|------------------|
| OP#                     | hours       | Kg/hr       | degC     | gr/hr            |
| OP1                     | 20          | 140         | 204      | <i>93</i>        |
| OP2                     | 20          | 170         | 235      | 120              |
| OP3                     | 10          | 143         | 239      | 306              |
| OP4                     | 10          | 245         | 300      | 300              |
| OP5                     | 15          | 235         | 300      | 600              |
| OP6                     | 10          | 200         | 197      | 400              |





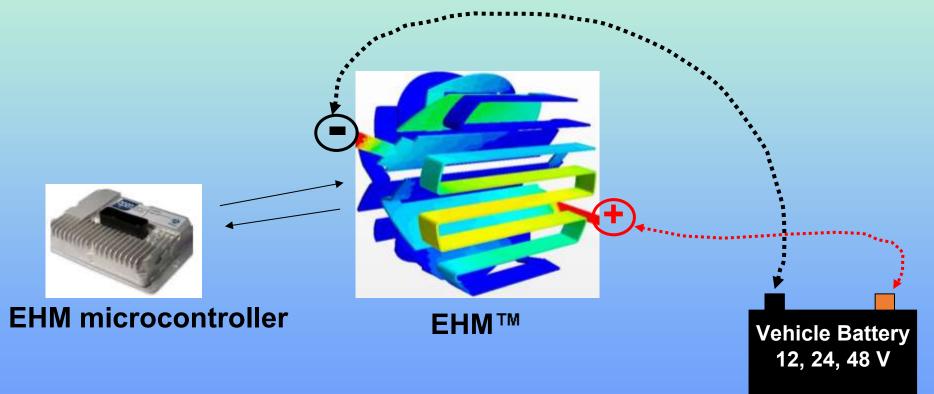



### **Urea Injection in 150 °C Exhaust: Without, & With EHM**

### Without EHM: Deposit








Copyright Emissol LLC ©. All Rights Reserved.

Flow rate: 100 kg/hr. Flow Temp.: 150 C Urea Inj.: 75 mg/s Duration: 1.5 hr.

## **EHM Controller**

- Prototype Controller Governs EHM Functions
- Control Algorithm is Integrated into Aftertreatment Control Module (ACM), or into ECU



Copyright Emissol LLC ©. All Rights Reserved.

# **EHM<sup>™</sup> Awards, Recognitions**

- SAE John Johnson Award (2024)
- German Innovation Award (2023)
- R&D-100 Award Finalist (2022)





Copyright Emissol LLC ©. All Rights Reserved.

FINALIST

2022



## Summary

- Electrically Heated Mixer/EHM<sup>™</sup>
- Enables Peak SCR Performance, Meeting Ultra-Low NOx Targets
- Provides SCR Both Heat & Ammonia in Any Operating Conditions
- Reduces NOx-Related Health Concerns in Closed Spaces, such as in Mines
- Low-Cost
- Easy Fit. Simply Swap Old Mixer with EHM. Needs No AFTS Re-Design
- Good also for Managing
  - Cold-Start
  - Deposit Mitigation
  - Forming Ammonia Independent of Exhaust Temperature







Contact: emissol@emissol.com

For Clean Air!



Copyright Emissol LLC ©. All Rights Reserved.



## Questions asked at MDEC:

### A) What is the electric power draw?

**Directional numbers:** In LDD, ~ 0.2%. MDD/ HDD: ~ 0.5%. When EHM is used also for SCR heating in cold-start: ~ 0.5% (in WHTC, HDD demo), ~ 2% (FTP, HDD demo) or higher pending each specific application (how "cold" the cycle is).

### B) Is it commercially available?

Short answer: Discussions for series manufacturing are starting.

There certainly is industry interest, as seen in our join publications with OEM and tier-1 suppliers. Interests include LDD, MDD, HDD, including off-road and marine.

### C) You said it could be easily switched from the regular mixer. Wouldn't this be a violation of engine certification rules and/or engine warranty?

- if EHM is integrated in a new (OEM) system, it would be a part of the certification process.
- if used in retrofit (there are indeed SCR retrofit activities, esp. outside of the US), this should not be an issue.

- if used in a system that is still under warranty, this may impact the warranty. Any such 'retrofit' should be coordinated with the OEM/ engine manufacturer (certifying party).

### D) Impact on NO to NO2 toxicity?

If I understand the question right: What EHM does is to heat the SCR catalyst & to accelerate thermolysis-hydrolysis reactions (making more ammonia for peak SCR efficiency).

NO / NO2 toxicity is predominantly a question of catalyst formulation (is it Cu/Fe-zeolite? Vanadia? Or ...? DEF dosing/ANR strategy? ...?) Though we are happy to discuss this further.

Copyright Emissol LLC ©. All Rights Reserved.

# **Back-up Slide**

Copyright Emissol LLC ©. All Rights Reserved.

## CO<sub>2</sub> Impact due to EHM

- Strongly Depends on Strategy (i.e., heating, DEF Injection Rate, etc.) lacksquare
- Generally lacksquare
  - EHM function to form more ammonia in low-temp. exhaust: ~ 0.2 to ~ 0.5%
  - EHM function as heater (e.g., in cold-start): Depending on strategy: ~ 0.5% and up ullet

EHM Lowering NOx and its  $CO_2$  (fuel penalty) impact \*

| Cycle Type (examples)   | NOx Reduction ↑by | CO <sub>2</sub> Impact |
|-------------------------|-------------------|------------------------|
| Full FTP Cycle          | 3 X               | 2%                     |
| WHTC                    | 10X               | 0.6%                   |
| Low-Load Cycle<br>(LLC) | 22X               | 5.3%                   |

Details in: :

"Meeting Future NOx Emission Regulations by Adding an Electrically Heated Mixer". Frontiers in Mechanical Engineering. Vol. 8. 2022

