

### CSA M423.4:25 – TSC Update Braking performance — Rubber-tired, self-propelled underground mining machines

Chairs: Cynthia Matikainen, Jason Flanagan

## M424.3:25, Technical Sub-Committee

| First name | Last name  | Company                                       | Position   |  |
|------------|------------|-----------------------------------------------|------------|--|
| C allaia   | Matikainen | Ontario Ministry of Labour, Immigration,      | Chair      |  |
| Cynthia    |            | Training and Skills Development (MLITSD)      |            |  |
| Jason      | Flanagan   | Caterpillar Inc                               | Vice Chair |  |
| Adrian     | Gillies    | Sandvik                                       |            |  |
| Andre      | Touchette  | MLITSD                                        |            |  |
| Benjamin   | Newlon     | J.H Fletcher & Co                             |            |  |
| Blair      | Baldwin    | Baldwin Services Inc                          |            |  |
| Bethany    | Chiasson   | Nova Scotia Department of Labour, Skills, and |            |  |
|            |            | Immigration                                   |            |  |
| Brendan    | Peacock    | Komatsu                                       |            |  |
| Brent      | Rubeli     | CanmetMINING                                  |            |  |
| Cary       | Ingram     | WSCC                                          |            |  |
| Cheryl     | Allen      | Vale                                          |            |  |
| Craig      | Allair     | United Steelworkers                           |            |  |
| Craig      | Harris     | Glencore                                      |            |  |
| David      | Schmidt    | Kovatera                                      |            |  |
| David      | Rezansoff  | Government of Saskatchewan                    |            |  |
| David      | Stewart    | Glencore                                      |            |  |
| Gaurav     | Mahajan    | NRCan                                         |            |  |
| Joel       | Thon       | Nutrien                                       |            |  |
| John       | Le         | Natural Resources Canada-CanmetMINING         |            |  |
| Paul       | Summers    | Miller Technology Inc                         |            |  |
| Raphael    | Tiangco    | Vale                                          |            |  |
| Richard    | Riach      | Epiroc                                        |            |  |
| Shawn      | Sauve      | Glencore                                      |            |  |

## M424.3 :25

# Braking performance — Rubber-tired, self-propelled underground mining machines

Background

- Current test required on 20% grade
- International standards allow testing on level ground (ISO 19296)
- Surface mining machines allow testing on level ground (ISO 3450)



## M424.3 :25

Braking performance — Rubber-tired, self-propelled underground mining machines

- Current testing requires and operator to initiate braking
- Autonomous vehicles are in use in underground mines,
- no specific requirements for remote controlled or autonomous vehicles.



## M424.3 :25 Objectives

Determine inclusion of:

- Level ground performance testing
- Testing for remote controlled and autonomous mobile machinery.
- Requirements for maximum deceleration or jerk to improve operator safety.

As decided:

Review and revise current standard.

#### M424.3 :25 Roadmap



#### Pugh Concept Selection Matrix

|    | Key Criteria              | Importance Raing | Datum othing | Option 1 | Option 2 | DoNating |   |  |
|----|---------------------------|------------------|--------------|----------|----------|----------|---|--|
| 1  | Criteria #1               |                  | S            |          |          | 0        |   |  |
| 2  | Criteria #2               |                  | S            |          |          | 0        |   |  |
| 3  | Criteria #3               |                  | S            |          |          | 0        |   |  |
| 4  | Criteria #4               |                  | S            |          |          | 0        |   |  |
| 5  | Criteria #5               |                  | S            |          |          | 0        |   |  |
| 6  | Criteria #6               |                  | S            |          |          | 0        |   |  |
| 7  | Criteria #7               |                  | s            |          |          | 0        |   |  |
| 8  | Criteria #8               |                  | s            |          |          | 0        |   |  |
| 9  | Criteria #9               |                  | s            |          |          | 0        |   |  |
| 10 | Criteria #10              |                  | s            |          |          | 0        |   |  |
| 11 | Criteria #11              |                  | s            |          |          | 0        |   |  |
|    | Sum of double positives   |                  |              | 0        | 0        | 0        | 0 |  |
|    | Sum of positives          |                  |              | 0        | 0        | 0        | 0 |  |
|    | Sum of double negatives   |                  |              | 0        | 0        | 0        | 0 |  |
|    | Sum of negatives          |                  |              | 0        | 0        | 0        | 0 |  |
|    | Sum of neutrals           |                  |              | 0        | 0        | 11       | 0 |  |
|    | Weighted sum of positives | 3                |              | 0        | 0        | 0        | 0 |  |
|    | Weighted sum of negative  | S                |              | 0        | 0        | 0        | 0 |  |
|    | Total weighted sum        |                  |              | 0        | 0        | 0        | 0 |  |

### **Proposed Options:**

- 1. Status quo all vehicles tested on a ramp
- 2. Level ground test equivalent for all vehicles (Formula ISO 19296, SABS, MDG-39, ISO 3450)
- 3. Level ground test equivalent for specific vehicles (based on criteria such as mass, center of gravity, speed)

#### **Key Criteria**

- 1. Satisfy primary purpose of test, scope of the standard
- 2. Probability of failure to stop on ramp, braking system design, stopping distance outside of the allowable
- 3. Accuracy of simulation, simulation of real world, test on flat should be expected to simulate ramp results
- 4. Safety of operator and test facility
- 5. Cost
- 6. Availability of test facility
- 7. Maintenance of test facility, Need information on compaction/surface
- 8. Required test instrumentation and equipment, Measurement tape or accelerometers/Electronics

### **Key Criteria**

- 9. Consideration of Stability, Observable?
- 10. Consideration for weight shift
- 11. Legislative compliance (Canada), Any conflict with other territories?
- 12. Incorporate brake mechanics, Type of brake systems any adjustments?
- 13. Consistent with other standards, Is this harmonized to directives or legislation.
- 14. Ability to achieve test speed consistently, Consideration of maximum speed control reliability
- 15. Consideration for overspeed or runaway

#### M424.3 :25 Roadmap



Formulas - response time and acceleration values vary

#### M424.3 :25 Roadmap



### M424.3 :25 Schedule

