MDEC Annual Conference October 2nd, 2018

Subsurface Mining Methods: Advanced In-Situ Bioleaching

Northern Mined Operations Anthony Farrugia, Liam Anderson, and Michael Janakaraj

[1]

Drilling, Development & Ore Body Preparation

- Similar to open stoping development
- 10% void space excavation
- Small stope size
- Fan drilling
- Electrode assembly for SelFrag system
- Pumps and piping for leachate solution (temporary set-ups)

Comparison of %Mass Copper Recovery to Free Solution using HVB and Biotic Methods

MDEC 2018

Situational Benefits to In-Situ Bioleaching

- 30% less CO2 and SO4 emissions from primary and secondary sources
- 5x less energy and water consumption
- Closed loop system with minimal acidic makeup and electronic plating for recovery
- Controlled steady state conditions due to self -containing "deep hard-rock ore body" pseudo underground reactor (i.e. Temperature, pH, and Flow)

Key Assumptions

- ~25k tonnes/stope (25m x 20m x 15m)
- 33% reduction in mine life
- Constant drill time
- Constant prep time for leaching or backfill
- Constant blasting or Selfrag time
- No mucking
- 80% recovery from bioleaching v. 90% recovery from longhole mining

Mining Methods Comparison

Parameters	Longhole Mining	3x Mucking Rate	Bioleaching	
Mine Life	10 years	7.8 years	6.7 years	
Processing Rate	1.1M tonnes/year	1.41M tonnes/year	1.64M tonnes/year	
Mucking Rate	1000 tonnes/day/stope	3000 tonnes/day/stope	-	
Mucking Time	24.75 days	8.25 days	-	
Stope Life	74.25 days	57.75 days	49.5 days	
Stope Turnover	44.24 stopes/year	56.88 stopes/year	66.36 stopes/year	
Production Ratio	<mark>100%</mark>	<mark>128.6%</mark>	<mark>150%</mark>	

Financial Comparison					
*Non-Encompassi	ng				
M\$ (CAD) per Annum	Longhole Method (10 yr.)	Longhole Method [3x] (7.8 yr.)	Bioleach Metho (6.7 yr.)		
Revenue	534.6	685.4	709.3		
Cost	-164.3	-210.5	-175.8		
Annual Balance	370.3	<mark>474.9</mark>	<mark>533.5</mark>		
NPV (B\$, CAD)	2.09	<mark>2.32</mark>	<mark>2.36</mark>		

EU Horizon 2020 Research and Innovation Program - BioMOre

www.biomore.info/home/

Northern Advantages Metals within orebody extracted without mucking (No backfill needed) Strong synergy between SelFrag and in-situ leach method Minimal use of mucking equipment Only development blasting required Increased extraction efficiency and reduced CO2 and SO4 emissions when using bio-leachate Production increased without limitation of material handling (i.e. equipment fleet or shaft) 50% Increase in production results in a 13% increase in NPV Overall, improves productivity, EHS and economic feasibility while reducing air pollutants such as diesel emissions, dust and blasting fumes

References

- Millar, D. L., Stark, T., Ranft, H., Blaisse, W., Kordowski, T., Penna, C., and Schumacher, J., 2009. Appendix G of a study to assess the exploitation of a challenging porphyry Gold-Copper deposit. EMC Feasibility Study. Delft University of Technology.
- SelFrag_AG. (2016, August 12). Starting with a 250g granite hand specimen, the SELFRAG Lab gives a dense media ready product, fast. [Tweet] Retrieved from <u>https://twitter.com/selfrag_ag/status/764107177342619649</u>
- 3. Shi, F., Manlapig, E., and Zuo, W., 2014. "Progress and Challenges in Electrical Comminution by High-Voltage Pulses." Chemical Engineering & Technology, 37: 765-769.
- 4. Mykytczuk, N.C.S., 2017. "Innovation in Biomining and Bioremediation." Laurentian University, Goodman School of Mines and Laurentian School of the Environment, Vale Living with Lakes Centre, Presentation.