

22nd ANNUAL MDEC CONFERENCE Toronto Airport Hilton Hotel, Canada October 4 – 6, 2016

MDEC DIESEL WORKSHOP

Mine Ventilation – Diesel & Alternative Equipment PRESENTED BY

Brian Prosser (Mine Ventilation Services) Cheryl Allen (Vale) Jozef Stachulak (MIRARCO) Michelle Levesque (Natural Resources Canada)

COORDINATED BY David Young (Natural Resources Canada)

OCTOBER 4, 2016

MDEC Diesel Workshop

Mine Ventilation – Diesel & Alternative Equipment

Hilton Toronto Airport Hilton & Suites Ontario, Canada

Tuesday, October 4, 2016

07:30 – 08:30	Breakfast and registration
08:30 – 12:00	Welcome – David Young, Co-chair MDEC Conference
	Basic Principles – Design process (Page 1-36) Brian Prosser, PE, Principal Consultant, Mine Ventilation Services
12:00 – 13:00	Lunch
13:00 – 16:00 :	Case Study 1- Impact of alternative mobile equipment power sources (Page 37-61) Cheryl Allen, P.Eng, Principal Engineer – Ventilation, Vale, and Jozef Stachulak Ph.D; P.Eng, Manager, Strategic Ventilation & Diesel Research, MIRARCO Mining Innovation
:	Case Study 2 – Manage energy in auxiliary mine ventilation systems (Page 62-79) Michelle Levesque, Senior Engineer in Mine/Mill Energy Efficiency and Underground Mine Environment, CanmetMINING, Natural Resources Canada

MDEC – 2016 Workshop Registration Address List

Cheryl Allen Vale Ontario Operations 18 Rink Street Copper Cliff, Ontario POM 1N0

Tony Almeida DCL International Inc. 241 Bradwick Drive Concord, Ontario L4K 2T4

Brett Andrews Cummins Sales and Services 18 Vermont Crescent North Bay, Ontario P1C 1L5

Jay Armburger Caterpillar Inc. 446 Macey Lake Road Metamora, Illinois 61548 USA

Chris Betsill J.S. Redpath Limited 710 McKeown Avenue North Bay, Ontario P1B 7M2

Merv Borgford Redpath Mining 710 Mckeown North Bay, Ontario P1B 7M2

Aleksandar Bugarski CDC/NIOSH/OMSHR 626 Cochrans Mill Road Pittsburgh, PA 15236 USA

Kevin Burkholder Cementation Canada Inc. 590 Graham Drive North Bay, Ontario P1B 7S1

Bob Deprez Airflow Catalyst Systems 2640 State Route 21 Wayland, New York 14572 USA Bus: (705) 682-6857 Fax: (705) 682-5312 Email: <u>cheryl.allen@vale.com</u>

Bus: (905) 660-6450 x 268 Fax: (905) 660-7566 Email: <u>talmeida@dcl-inc.com</u>

Bus: (705) 499-7208 Email: <u>brett.andrews@cummins.com</u>

Bus: (309) 494-2866 Email: <u>armburger_jay_d@cat.com</u>

Bus: (705) 474-4042 ext. 414 Cell: (705) 471-2057 Email: <u>chris.betsill@repathmining.com</u>

Bus: (705) 471-8714 Email: <u>merv.borgford@redpathmining.com</u>

Bus: (412) 386-5912 Email: <u>ABugarski@cdc.gov</u>

Bus: (705) 475-8378 Email: <u>kevin.burkholder@cementation.com</u>

Bus: (585) 728-8012 Email: <u>rdeprez@airflowcatalyst.com</u> Ron Duguay VALE 18 Rink Street Copper Cliff, Ontario P0M 1N0

Dwaine Gaudette Goldcorp Musselwhite Mine Box 7500 Thunder Bay, Ontario P7B 6S8

Tom Guse Glencore

Arash Habibi Tronox Corporation 580 Westvaco Road Green River, Wyoming 82935 USA

Zachary Henderson Virginia Tech M&MEND 100 Yorkshire Court Blacksburg, Virginia 24060 USA

Tim Hinds Glencore 3259 Skead Road Sudbury, Ontario P0M 2Y0

Brian Hooten Tronox PO Box 872 Green River, Wyoming USA 82935

Harsim Kalsi Ministry of Labour 159 Cedar St., Suite 301 Sudbury, Ontario P3E 6A5

Seppo Karhu Sandvik Mining and Construction Vahdontie 19, P.O. Box 434 Turku Finland 20101

Kari Kasari Sandvik Mining Vahdontie 19, P.O. Box 434 Turku Finland 20101

Jussi Koivuniemi Sandvik Mining Vahdontie 19, P.O. Box 434 Turku Finland 20101 Bus: (705) 507-9489 Email: <u>ron.dugay@vale.com</u>

Bus: (807) 928-3146 email: <u>Dwaine.gaudette@goldcorp.com</u>

Bus: (705) 929-0943 Email: tom.gus@glencore-ca.com

Bus: (307) 872-2594 Email: <u>arash.habibi@tronox.com</u>

Bus: (804) 363-3383 Email: <u>zmh4616@vt.edu</u>

Bus: (705) 693-2761 x 4080 Email: <u>tim.hinds@glencore-ca.com</u>

Bus: (307) 872-2477 Email: <u>brian.hooten@tronox.com</u>

Bus: (705) 564-7177 Fax: (705) 564-7437 Email: <u>Harsim.Kalsi@ontario.ca</u>

Bus: +358 400 775 939 Email: <u>seppo.karhu@sandvik.com</u>

Bus: +358 400 869 999 Email: <u>kari.kasari@sandvik.com</u>

Bus: +358505950686 Email: jussi.koivuniemi@sandvik.com Bus: (705) 675-3381 Fax: (705) 675-2438 Brian Kutschke USW Local 6500 66 Bready Street Sudbury, Ontario P3E 1C8

Alain Landry Glencore –Sudbury 6 Edison Rd. Falconbridge, Ontario P0M 1S0

Michelle Levesque Canmet Mining, NRCan 1079 Kelly Lake Road Sudbury, Ontario P3E 5P5

Rob Martel Alamos Gold Inc. 259 Matheson Street Mine Site, Hwy. 566 Matachewan, Ontario P0K 1M0

Greg Mascioli Kidd Operations PO Box 2002 Stn. Main Timmins, Ontario P4N 7K1

Dale Rakochy Sandvik 100 Magill Street Sudbury, Ontario P3Y 1K7

Jan Romo Unifor 2550 Richard Lake Drive Sudbury, Ontario P3G 0A3

Brent Rubeli CanmetMINING, NRCan 1 Haanel Dr., Bldg. #9 Nepean, Ontario K1A 1M1

Rick Shulist Ministry of Labour 217 York Street, 5thFloor London, Ontario N6A 5P9

Branden Sitterud Mac's Mining Repair 225 West 400 South Huntington, UT 84528 USA Bus: (705) 693-2761 x 3693 Email: <u>alain.landry@glencore-ca.com</u>

> Bus: (705) 677-7812 Fax: (705) 670-6556 Email: michelle.levesque@canada.ca

Bus: (705) 692-0271 Email: <u>rmartel@alamosgold.com</u>

Bus: (705) 267-6885 Email: <u>Greg.Mascioli.glencore-ca.com</u>

Bus: (705) 677-7221 Email: <u>dale.rakochy@sandvik.com</u>

Bus: (705) 673-3661 Fax: (705) 673-1183 Email: <u>natalie.williamson@minemill598.com</u>

Bus: (613) 996-6285 Fax: (613) 996-2597 Email: <u>brent.rubeli@canada.ca</u>

Bus: (519) 646-3249 Email: <u>rick.shulist@ontario.ca</u>

Bus: (435) 749-0121 Email: <u>branden@macsminingrepair.com</u> Tanner Smith Potash Corp. – Allen P.0. Box 301 Allan, SK S0K 0C0

Aarti Soerensen Canadian German Chamber Of Commerce 480 University Ave. Suite 1500 Toronto, Ontario M5G 1V2

Jozef Stachulak MIRARCO 935 Ramsey Lake Road Sudbury, Ontario P3E 2C6

Glenn Staskus Ontario Ministry of Labour 159 Cedar Street, 3rd Floor, Suite 201 Sudbury, Ontario P3E 6A5

Evelynn Stirling Cummins Inc. 500 Jackson Street Columbus, Indiana 47201 USA

Robert Stoyanoff Golder Associates 121 Commerce Park Drive, Unit L Barrie, Ontario L4N 0E4

Karsten Taudte Cummins Inc. Peter-Traiser-Strasse 1 Gross Gerau GERMANY 64521

Dustin Teuscher Cummins

Adam Tonnos Toromont CAT 25 Mumford Road Sudbury, Ontario P3Y 1K9 Bus: (306) 257-2138 Fax: (306) 257-4240 Email: <u>tanner.smith@potashcorp.com</u>

Bus: (416) 598-7091

Email: aarti.soerensen@germainchamber.ca

Bus: (705) 675-1151 ext. 5093 Fax: (705) 675-4838 Email: jstachulak@mirarco.org

Bus: (705) 564-4165 Fax: (705) 564-7435

Email: GleInn.Staskus@ontario.ca

Bus: (812) 377-6145 Email: <u>Evelynn.j.stirling@cummins.com</u>

Bus: (705) 790-9276 Fax: (705) 722-3786 Email: <u>rstoyanoff@golder.com</u>

Bus: +49 6152 174187 Email: <u>karsten.taudte@cummins.com</u>

Bus: (317) 600-4426 Email: <u>dustin.teuscher@cummins.com</u>

Bus: (705) 665-1807 Email: <u>atonnos@toromont.com</u>

Alexander Willows Sandvik Mining 2550 Meadowvale Blvd. Mississauga, Ontario L5N 8C2 Bus: (647) 208-6560 Email: <u>alex.willows@sandvik.com</u> David A. Young CanmetMINING 1 Haanel Dr., Bldg. #9 Nepean, Ontario K1A 1M1 Bus: (613) 943-9265 Fax: (613) 996-2597 Email: <u>david-a.young@canada.ca</u>

	NIOSH - Chekan				
Realize that mitigation strategies for individual hazards will provide a load on the ventilation system	Dust Control in Metal/Nonmetal Underground Mining				
	 Crushers and Truck Dumps Isolate dust sources from ventilation system Airflow to direct dust directly to the exhaust Localized Fans installed as close to the dump as possible Operators booth should be equipped with filtration systems 				

General Comments

- Although with enough design and engineering almost anything can be justified.
- What happens if "engineered" solutions fail?
- How can the ventilation systems be designed to promote success?
- What basic design parameters can be adjusted to provide a basic level of coverage?
- These would be considered "best practices".

💖 srk consulting1

Airflow quantity evaluation is a multi-faceted problem, simple justification by a single parameter is not sufficient

Design Criteria Equipment Airflow Requirement

Airflow requirement cannot be based on a single parameter. Multiple parameters need to be met:

- Gas Dilution
- Diesel Particulate
- Heat
- Minimum Velocity

Examples; 0.08 m³/s per kW for general use in the US 0.06 m³/s per kW for general use in Ontario or Chile 0.05 m³/s per kW for general use in Western Australia

• For general ventilation planning a fixed value of cfm/bhp (m³/s per kW) provides for basic airflow allocations and different engine manufacturers/emissions controls.

Design Criteria - Diesel

• Dilution values for specific equipment based on NIOSH and CANMET testing is also useful as a minimum but may restrict the versatility of the system.

Versiting srk consulting

Design Criteria - Diesel

- Lower values can be used based on tested dilution factors but they must be balanced with other parameters (minimum air velocity, and heat).
- Remember that not all equipment in use in the mine will be maintained in an "as new" manner.
- Availability of ultra low sulfur fuel may not be sufficient.

Design Criteria -	- Air Velocity
 Maximum Visibility – dust Comfort (not more than 4 m/s) Economics (should be evaluated Safety – Skip/Cage Stability (10 engineered systems with high cage) 	for each region location) m/s rope guides, 20 m/s for pital costs)
Area	Velocity (m/s)
Working faces	4
Conveyor drifts	5
Main haulage routes	6
Smooth lined main airways	8
Hoisting shafts	10
Ventilation shafts	20
	(McPherson)

Just because a mine is not "deep" does not mean heat will not be a factor. Influx of hot/warm water, surface conditions, equipment load, and airflow quantity all contribute to heating issues

Design Criteria - Heat

- Flow through ventilation system
- Fans should be exhausting, heat loads should be placed near exhaust routes, fresh air routs should be clear of fixed equipment.

	Design Criteria - Heat TLV and Action Limit for Heat Stress Exposure (ACGIH, 2007).							
	٦	LV (WBGT v	alues in °	C)	Action Limit (WBGT values in °C)			
Allocation of Work in a Cyc of Work and Recovery	le Light	Moderate	Heavy	Very Heavy	Light	Moderate	Heavy	Very Heavy
75% to 100%	31.0	28.0	N/A	N/A	28.0	25.0	N/A	N/A
50% to 75%	31.0	29.0	27.5	N/A	28.5	26.0	24	N/A
25% to 50%	32.0	30.0	29.0	28.0	29.5	27.0	25.5	24.5
0% to 25%	32.5	31.5	30.5	30	30.0	29.0	28.0	27.0
•	Some c Some c	ompanies ompanies	use a r use a r	eject wet eject wet	bulb ten bulb ten	nperature nperature	of 26.5 of 28°(,°C ⊃
					7	- srk co	nsultin	G 3

Mine Layout - Auxiliary Ventilation Systems

The choice of a blowing (forcing) system of ventilation versus an exhausting system will also have an impact not only on the ventilation system design, but also may impact the tunnel design itself (such as the locations of various connections or fixed facilities, or the need and location(s) of ventilation controls such as doors and regulators.

Each of these types of systems has its own properties and thus its own benefits and drawbacks, they can be more suited to certain types of designs than others.

This process is often iterative; a design is selected, its benefits and consequences examined, and then if necessary an alternative is implemented.

Shop, Fuel Bay, and Garage Ventilation						
 Example Air Change Rates Assumptions are built into rates like welding fume hoods, hookups for diesel exhaust extraction at tailpipe. 						
Location	Minutes per Air Change					
Training Room	6					
Offices	5					
Warehouse Areas	7					
Electrical Room	6					
Service Bay	3					
Sanitary Facilities	5					
Lunchroom	5					
	💖 sirk consulting,					

Airflow Calculation Based on Air Change Rates								
Location	Area Dimensions (m)		ions (m)	Minutes per Air Change	Volume (m ³)	Airflow (m³/s)	Number of Areas	Total (m³/s)
Office	5	5	60	5	1500	5.0	3	15.0
Training	5	5	60	6	1500	4.2	2	8.4
Warehouse	7	6	80	7	3360	8.0	2	16.0
Service Bay	7	6	40	3	1680	9.3	6	18.6
Total airflow								58.0
 Contaminants directed to exhaust at point of origin Fans can be used to provide localized flow direction Fuel Bays and lubricant storage areas should be directly exhausted (isolation or fire doors) 								

Airflow Calculation - Heat

Simulation or Calculation Programs are used for this; CLIMSIM, VentSIM, VUMA, and Others.

Rock Mass Heat Loads

Level Inlet Conditions 27°C Dry Bulb/23°C Wet Bulb, Barometric Pressure 101.325 kPa Depth – 1310 meters below collar elevation Friction Factor – 0.012 kg/m³ Drift Wetness Factor – 0.15 Virgin Rock Temperature – 27.2°C Geothermal Step – 30 meters per °C Conductivity 4.2 W/m°C Diffusivity 1.5 m²/sx10⁻⁶

	Comparison of Values (Mining Area)	
Each general	Method Airflow	Airflow (m ³ /s)
require this type of	Generalized Dilution Factor (0.06 m ³ /s per kW)	50
airflow evaluation.	MSHA (NIOSH) Dilution (Diesel)	25
I his is not the overall airflow	MSHA (NIOSH) Dilution (Particulate)	97
requirement for the	Minimum Velocity (for Dust Control)	48
mine, but the	Max Wet Bulb Temperature (28°C)	70
requirement	Wet Bulb Globe Temperature (28°C)	130
	Wet Bulb Globe Temperature (Electric LHDs) (28°C)	90
	Wet Bulb Globe Temperature (Electric LHDs and Truck) (28°C)	70
	~v ≓ srk c	onsulting ₇

Relationship Between Mining Area Values and Total Mine Airflow

The mining area airflow requirement does not directly translate to the overall mine airflow requirement.

- Leakage rates must be accounted for.
- Leakage rates may vary from 25% to 90% depending upon many site specific factors:
 - 1. Number of Bulkheads
 - 2. Type of Construction for Bulkheads
 - 3. Age of Infrastructure
 - 4. Doors
 - 5. Intake/Exhaust Connections
 - 6. Fan Placement
 - 7. Ventilation of Dedicated Areas (Ramps, etc.)

Vr srk consultings

	Context	
2.	Case Study Scenarios	
3.	Design Criteria 1. Air Volume	
	 Vent Plan Environment Economics 	
	5. Risk	
4.	Ventilation Design	
5.	Heat Load Modeling	
о. 7	Comparison of Results	
8.	Summary	
9.	References	

		Diesel Equipment						
Activity	Equipment	# of Equipment	HP	Total HP	Factor	100cfm/bhp	Utilization	CFM requi
					1.2			
Level - Production	8 yrd scoop	2	325	650	780	78000	100%	78
	Personnel Carrier	1	134	134	160.8	16080	40%	6
	пн	1	102	102	122.4	12240	40%	4
	Anfo loader	1	147	147	176.4	17640	40%	7
	Kubota	1	50	50	60	6000	40%	2
	30 T truck	1	409	409	490.8	49080	100%	49
	Boiter	1	160	160	192	19200	40%	7
	Makaza Awa Dania	00.0/ 61					2004	155
	Volume Aux Recirc	30 % factor					30%	46
Production	0 - ml	1	005	1652	1/90	20000	4000	202
Development	8 yrd scoop		325	325	390	39000	100%	38
	30 T FUCK		409	409	490.8	49080	100%	49
	Bolter		160	100	192	19200	40%	
	Personnel Carner		134	134	160.8	16080	40%	103
		25 % factor					2564	102
Development		25 % lactor		1029	1234		2376	127
Totals	Production	6		9912	10742			1115
Totalo	Development	3		3084	3701			383
	Development Ramp	1		1028	1234			127
	bevelopment nump							
				14024	15677			1626
s	UBTOTAL MOBILE EQUIPMENT			14024	15677			1626
	Infrastructure (Garages, conveyors)	1						100
	SUBTOTAL IN	FRASTRUCTURE						100
	BASE S	UBTOTAL						1726
	Fel 3 Design Prima	ry Leakage Factor 15 %					0.15	258
	TOTAL FRES	H AIR VOLUME						19849

	Batte	ry Equipment			
ctivity	Equipment	# of Equipment	HP	Total HP	Factor
					1.2
evel - Production	8 yd scoop	2	227	454	544.8
	Personnel Carrier	1	94	94	112.8
	ITH	1	71	71	85.2
	Anto loader	1	103	103	123.6
	Kubota	1	35	35	42
	30 T truck	1	286	286	343.2
	Bolter	1	112	112	134.4
	Volume Aux Recirc	15 % factor			
Production		7		1155	1252
Development	8 yd scoop	1	227	227	272.4
	30 T truck	1	286	286	343.2
	Bolter	1	112	112	134.4
	Personnel Carrier	1	94	94	112.8
		25 % factor			
Development		4		719	863
Totals	Production	6		6930	7510
	Development	3		2157	2588
	Development Ramp	1		719	863
				9806	10961
5	SUBTOTAL MOBILE EQUIPMENT			9806	10961
	Infrastructure (Garages, conveyors)	1			
	Fel 3 Design Primary Leakage Factor 15 %		1		
	TOTAL ERES				

Ventilation Plan To reduce risk, potential ventilation critical issues and system limitations need to be identified early in the design · It is good practice, if possible, to supply escape way systems with fresh air Garages should be located close to return air systems to allow exhaust to go immediately to a return air system One pass ventilation is desired for primary ventilation systems, particular to diesel powered fleets, to avoid re-circulating contaminants Include and describe the Ventilation Control System selected to incorporate in the design In creating a ventilation design, consider how people would move to refuge stations and what the rescue-ability would be to reach these employees (ie ramp ventilation, fresh air delivery methodology) • If heat is a concern, determine how much air is required to dilute heat to acceptable levels and/or what cooling load is required of a mechanical refrigeration system (or alternative) VALE

VALE

Economics

- Complete an economic analysis using capex and opex to evaluate and recommend appropriate main airway sizing
 - Apply the current discount factors to economic calculations
 - Apply the power rate recommended by the Energy Dept
 - Use development rates approved by the specific site location
- Optimize the ventilation system critical path based on the economic analysis
- · Size the primary airways to achieve the lowest NPV

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Equipment	Air Volume (cfm)	Volume Reduction	Raise Bore Diameter (feet)	Size Reduction	
Diesel	200,000	200,000→180,000	11	11 → 10.5	
Diesel/Battery	180,000	180,000→116,000 35.5%	10.5	5% 10.5 →8.7 17%	Raise size reduction
Battery	116,000	200,000→116,000 42%	8.7	11 → 8.7 21%	po. 2000.
Equipment	Air Volume (cfm)	Volume Reduction	Raise Bore Diameter (feet)	Size Reduction	
Equipment Diesel	Air Volume (cfm) 830,000	Volume Reduction 830,000→690,000 17%	Raise Bore Diameter (feet) 19	Size Reduction $19 \rightarrow 17.5$ 8%	Raise size reduction
Equipment Diesel Battery	Air Volume (cfm) 830,000 690,000	Volume Reduction 830,000→690,000 17% 690,000→570,000 17.4%	Raise Bore Diameter (feet) 19 17.5	Size Reduction $19 \rightarrow 17.5$ 8% $17.5 \rightarrow 16.5$ 4%	Raise size reduction per Area

Equipment	Air Volume	Volume Reduction	Fan Power (HP)	Power Reduction		
Diesel	90,000	90,000→55,000	180	1080 → 480	Power reduction for 6	
Battery/Diesel	55,000	39% 55,000→35,000 36%	80	55.5% 480 →240 50%	auxiliary fans on one level	
Battery	35,000	90,000→35,000 61%	40	1080 → 240 78%		
Fauinment	Air	Volume	Fan Power	Power		
Equipment	Volume (cfm)	Reduction	(HP)	Reduction		
Diesel	830,000	830,000→690,000 17%	2616	2616 → 2283 13%	Power reduction for	
Battery/Diesel	690,000	690,000→570,000 17.4%	2283	2283 →1719 25%	Primary lans	
Battery	570,000	830,000→570,000 31%	1719	2616 → 1719 34%		

Equipment	Air	Volume	Natural	Natural Gas	
	(cfm)	Reduction	Gas (It ³)	Reduction	
Diesel	830,000	830,000→690,00 0	57,558,948	$\begin{array}{c} 57.6M \ \text{ft}^3 \rightarrow 47.8M \\ \text{ft}^3 \end{array}$	
		17%		17%	Reduction of
Battery/Diesel	690,000	690,000→570,00 0	47,850,210	$\begin{array}{c} 47.8 \text{M ft}^3 \rightarrow 39.5 \text{M} \\ \text{ft}^3 \end{array}$	Natural Gas
		17.4%		17.4%	
Battery	570,000	830,000→570,00 0	39,528,434	$\begin{array}{c} 57.6 \text{M ft}^3 \rightarrow 39.5 \text{M} \\ \text{ft}^3 \end{array}$	
		31%		31%	
Equipment	Air Volume (cfm)	Volume Reduction	Cooling (MW)	Cooling Reduction	
Diesel	830,000	830,000→690,00	13	$13 \text{ MW} \rightarrow 10.8 \text{ MW}$	Reduction of
		0 17%		17%	Refrigeration
Battery/Diesel	690,000	690,000→570,00	10.8	10.8 MW \rightarrow 8.9 MW	
		0 17.4%		17.6%	
Battery	570,000	830,000→570,00	8.9	$13 \text{ MW} \rightarrow 8.9 \text{ MW}$	
		0		31.5%	
		31%			

				134
Althoug er	gh the sys nergy it wa	stem with D as the chea	uct A use pest optio	d more on
_		Energy cost (\$/year)	Total cost (\$/year)	_
	Duct A	239,444	353,949	
	Duct B	166,020	410,536	
	Duct C	118,958	569,381	
b	ut what al and lon	oout other d ger term pro	uct lengtl ojects?	hs
© Her Majesty the Queen in	n Right of Canada, as represented b	by the Minister of Natural Resources, 2016		Canadă

It's important to consider the system as a whole to minimize costs – fan and duct

	Energy co	ost (\$/year)	Total cos	st (\$/year)
	Base case	Optimal fan	Base case	Optimal fan
Duct A	239,444	239,444	353,949	353,949
Duct B	166,020	146,158	410,536	403,604
Duct C	118,958	101,925	569,381	560,474
Minimum Duct leng Project lif	n flowrate: 31 n th: 1200 m Te: 1 year	n³/s		

149

150

	Energy co	Energy cost (\$/year)		st (\$/year)
	Base case*	Optimal fan	Base case	Optimal far
Duct A	239,444	153,513	353,949	251,768
Duct B	166,020	106,512	410,536	340,369
Duct C	118,958	54,552	569,381	493,967
Fixed spect Minimum	ed scenarios at flowrate: 25 n th: 1200 m	1800 rpm 1 ³ /s		

We can reduce the costs by choosing the right fan and controlling the flowrate

	Energy cos	t (\$/year)	Total cost	(\$/year)
Fixed speed (base case)*	239,4	444	353,9	949
Fixed speed (opt. fan)	153,513	(36%)	251,768	(29%)
Fixed custom speed (opt. fan)	137,765	(42%)	236,020	(33%)
Variable speed (opt. fan)	99,889	(58%)	211,026	(40%)
 Minimum flowrate: 25 m³/s Duct length: 1200 m Project life: 1 year 	•			
⁵ The minimum flowrate deliver original design did not properl	ed in this cas y consider th	e was 31 m ³ e system as	³ /s because th a whole	е
Her Majesty the Queen in Right of Canada, as represented by t	he Minister of Natural Res	ources, 2016		Cana

Canada

With more leakage less air gets to the end of the duct but the power doesn't change much

leakage	2%	5%	10%	25%
Q fan (m ³ /s)	26	26	26	28
Q face (m ³ /s)	25	24	24	21
Power (kW)	52	52	52	51
Electricity cost (\$/year)	36,550	36,430	36,258	35,849

Autural Resources Hessources naturates Canada Canada

Increasing power to meet air demand in leaky systems can be costly

leakage	2%	5%	10%	25%
Q fan (m ³ /s)	26	26	28	33
Q face (m ³ /s)	25	25	25	25
Power (kW)	52	55	61	90
Electricity cost (\$/year)	36,550	38,743	42,974	63,271
% savings (fixing leaks)		6%	15%	42%
 Fixed speed fan, all scen Minimum flowrate: 25 r Duct length: 200 m Project life: 1 year 	arios at differ n³/s	ent speed		

Strategy	% Energy savings	
	Auxiliary	Total
Jse low friction ducting	20 to 58	4 to 11
latch the fan to the duct	36	7
Control flowrate	42 to 58	8 to 11
Reduce leakage	6 to 42	1 to 8

