

18th ANNUAL MDEC CONFERENCE Toronto Airport Marriott Hotel, Canada October 2 – 4, 2012

MDEC DIESEL WORKSHOP TIER 4 DIESEL ENGINES AND MAINTENANCE (UNDERGROUND MINES)

ORGANISED BY: JP Ouellette (Kubota) and David Young (CanmetMINING)

COMPLIED BY: Mahe Gangal (CanmetMINING)

OCTOBER 2, 2012

MDEC Diesel Workshop

Tier 4 Diesel Engines and Maintenance (Underground Mines)

Toronto Airport Marriott Hotel Ontario, Canada

Tuesday, October 2, 2012

- 07:30 08:30 Breakfast and Registration
- **08:30 12:00** Welcome Mahe Gangal, Co-chair MDEC Conference Introduction JP Ouellette, Co-chair MDEC Conference
 - JP Ouellette, Kubota
 - Evelynn Stirling, Cummins
 - Darcy Thomson, John Deere
 - Darren Tasker, Volvo Penta

12:00 – 13:00 Lunch

13:00 - 16:30

- Greg Tremaine, Deutz
- Daniel J. Brian, Caterpillar
- Dee Wise, MTU

Discussion and Conclusion, David Young, Secretary/Treasurer MDEC

MDEC Diesel Workshop

Tier 4 Diesel Engines and Maintenance (Underground Mines)

Toronto Airport Marriott Hotel Ontario, Canada

Tuesday, October 2, 2012

Contents

Di	esel workshop agenda	i
Та	ible of contents	ii
Lis	st of attendees	iii
1.	Emissions Regulation An Overview (JP Ouellette, Kubota)	1
2.	Cummins Tier 4 Technology Overview (Evelynn Stirling, Cummins)	11
3.	Final Tier 4 Emission Engines (Darcy Thomson, John Deere)	35
4.	Volvo Penta Engines (Darren Tasker, Volvo Penta)	40
5.	The Deutz Path to Tier 4 for Underground Mining Engines (Greg Tremaine, Deutz)	69
6.	Ventilation Reduction Strategy (Daniel J. Brian, Caterpillar)	78
7.	Engines for Underground Mining (Dee Wise, MTU)	87

MDEC 2012 Workshop Registration Address List

Brett Andrews Cummins Eastern Canada 330 Aubrey St., North Bay, Ontario P1B 6H9

Peter Anyon PM-Tech 53 Karnu Drive Ninderry, Queensland Australia 4561

Ron Archer MTU 39525 Mackenzie Drive Novi, MI USA 48388

Bill Bailey Vale Canada Ltd. 4149 Heritage Ave. Hanmer, Ontario P3N 1Z6

Bryan Barton Atlas Copco N 905 Cedar View Estates Rd Blanchard, ID USA 83804

Paul Bentley USW 6166 19 Elizabeth Drive Thompson, MB R8N IS7

Boyd Bishop Pogo Mine PO Box 145 Delta Junction, Alaska USA 99737

Ciaran Boyle Boliden Tara Mines Ltd. Knockumber Rd Navan, Co. Meath Ireland Bus: (705) 497-1019 email: <u>brett.andrews@cummins.com</u>

Bus: +6 175-446-8315 Fax: +6 173-503-9022 email: <u>peter.anyon@pm-tech.com.au</u>

Bus: (248) 560-8054 email: <u>Ran.Archer@Tognum.com</u>

Bus: (705) 699-4086 Cell: (705) 698-9862 email: <u>bill.bailey@vale.com</u>

Bus: (775) 397-3832 email: <u>bryan.barton@us.atlascopco.com</u>

Bus: (204) 778-2563 email: <u>Paul.Bentley@Vale.com</u>

Bus: (907) 895-2744 email: <u>boyd.bishop@smmpogo.com</u>

Bus: 00 353 46 908-2493 Fax: 00 353 46 908-2583 email: ciaran.boyle@boliden.com Daniel Brian Caterpillar Global Mining 300 Hamilton Blvd., Suite 300 Peoria, IL USA 61629

Darrell Brown Goldcorp Canada Musselwhite Mine PO Box 7500 Thunder Bay, Ontario P7B 6S8

Aleksandar Bugarski NIOSH/OMSHR 626 Cochrans Mill Rd. Pittsburgh, PA USA 15236

Gianni Caravaggio Natural Resources Canada CanmetENERGY 1 Haanel Drive Nepean, Ontario K1A 1M1

Colin Chandler Peak3 Pty Ltd 15 Chetwynd Street Loganholme, QLD Australia 4129

Kevin Cox Barrick Cortez Crescent Valley, Nevada USA 89821

Norm Dallaire Xstrata Copper – Kidd Operations 11335 Hwy. 655 North Timmins, Ontario P4N 7K1

Ron Duguay Vale Canada Ltd. 60 Mine Road Garson Ontario P3L 1N6

Michael Durnin Boliden Tara Mines Ltd. Knockumber Rd Navan, Co. Meath Ireland Bus: (309) 675-0257 email: <u>briandj@cat.com</u>

Bus: (807) 928-3002 Fax: (807) 928-2258 email: <u>darrell.brown@goldcorp.com</u>

Bus: (412) 386-5912 Fax: (412) 386-4917 email: <u>ABugarski@cdc.gov</u>

Bus: (613) 992-8934 email: <u>gcaravag@nrcan.gc.ca</u>

Bus: +61 7 3801 4897 +61409700040 Fax: +61 7 3801 4753 email: <u>cchandler@peak3.com.au</u>

Bus: (775) 468-4592 email: <u>KCox@barrick.com</u>

Bus: (705) 267-8782 Fax: (705) 267-8709 email: <u>ndallaire@xstratacopper.ca</u>

Bus: (705) 507-9489 email: <u>ron.duguay@vale.com</u>

Bus: 00 353 46 908-2347 Fax: 00 353 46 908-2583 email: <u>Michael.durnin@boliden.com</u> Guy Fugate Cargill 2400 Ships Channel Cleveland Ohio USA 44113

Mahe Gangal Head, Diesel Emissions CANMET- MMSL 1 Haanel Dr., Bldg. 9 Nepean, Ontario K1A 1M1

Brian Gould Sumito Metal Mining–Pogo Mine PO box 145 Delta Junction, Alaska USA 99705

Patrick Hanratty Boliden Tara Mines Ltd. Knockumber Rd Navan, Co. Meath Ireland

Kevin Hinds Vale Canada Ltd. 65 Sunderland Rd. Garson, Ontario P3L 1M8

Brian Hooten FMC PO Box 72 Green River, Wyoming USA 82935

George Hughes CEMI 935 Ramsey Lake Road Sudbury, Ontario P3E 2C6

Ryan Jaeger L&M Radiator 1414 East 37th St. Hibbing, Minnesota USA 55746

Harsim Kalsi Ontario Ministry of Labour 159 Cedar St., Suite 301 Sudbury, Ontario P3E 6A5 Bus: (216) 357-4616 email: <u>Guy.Fugate@cargill.com</u>

Bus: (613) 996-6103 Fax: (613) 996-2597 email: <u>mgangal@nrcan.gc.ca</u>

Bus: (907) 895-2927 email: <u>brian.gould@smmpogo.com</u>

Bus: 00 353 46 908-2493 Fax: 00 353 46 908-2583 email: <u>pat.hanratty@boliden.com</u>

Bus: (705) 561-0784 email: <u>Kevin.hinds@vale.com</u>

Bus: (307) 872-2477 email: <u>brian.hooten@fmc.com</u>

Bus: (705) 673-6568 x0 Fax: (705) 671-3878 email: <u>info@miningexcellence.ca</u>

Bus: (218) 362-7513 email: <u>rjaeger@mesabi.com</u>

Bus: (705) 564-7177 Fax: (705) 564-7437 email: <u>harsim.kalsi@ontario.ca</u> Paul Kant Xstrata Nickel 3259 Skead Road Skead, Ontario P3L 1S7

Seppo Karhu Sandvik Mining and Construction Vahdontie 19 Turku Fi – 20101 Finland

Blake Keller Airflow Catalyst Systems 2144 Brighton-Henrietta TL Rd Rochester, New York USA 14623

Jussi Koivuniemi Sandvik Mining Vahdontie 19, PO Box 434 Turku Finland FI-20101

Brian Kutschke Vale Canada Ltd.

Alain Landry Xstrata Nickel (Sudbury) 6 Edison Rd. Falconbridge, Ontario P0M 1S0

William Madura PO Box 72 Green River, Wyoming USA 82935

Greg Mascioli Xstrata Copper-Kidd Creek Mine 11335 Highway 655 North Timmins, Ontario P4N 7K1

Olli Matikainen MTI 25 Fielding Road Lively, Ontario P3Y 1L7

Sean McGinn MKNIZD Factors Inc. 340 Parkdale Ave., Suite 134 Ottawa, Ontario K1Y 1P2 Bus: (705) 693-2761 email: <u>pkant@xstratanickel.ca</u>

Bus: +35 8400775939 email: <u>seppo.karhu@sandvik.com</u>

Bus: (585) 295-1510 Fax: (585) 295-1515 email: <u>bkeller@airflowcatalyst.com</u>

Bus: +35 8505950686 email: jussi.koivuniemi@sandvik.com

Bus: (705)682-6368 email: <u>brian.kutschke@vale.com</u>

Bus: (705)693-2761 x 3693 email: <u>alandry@xstratanickel.ca</u>

Bus: (307) 872-2477 email: <u>brian.hooten@fmc.com</u>

Bus: (705) 267-8712 Fax: (705) 267-8869 email: <u>gmascioli@xstratacopper.ca</u>

Bus: (705) 507-2264 email: <u>olli.matikainen@mti.ca</u>

Bus: (613) 808-3031 email: <u>mknizd@gmail.com</u> John McLeod Potash Corp. Allan Division Box 301 Allan, SK S0K 0C0

Guy Montpellier Vale – Creighton Mine 1 Rink Road Copper Cliff, Ontario P0M 1N0

Colin Morrish Saskatchewan LRWS Mines Safety Unit 8th Floor, 122-3rd Avenue North Saskatoon, SK S7K 2H6

Jeffrey Munk FMC PO Box 72 Green River, Wyoming USA 82935

Umbereen Mustafa Airflow Catalyst Systems 2144 Brighton Henrietta TL Rd. Rochester, New York USA 14623

Jean-Pierre Nosé Hudson Bay Mining & Smelting Co. PO Box 1500 Flin Flon, MB R8A 1N9

Jake O'Hara L&M Radiator (Mesabi) 1414 East 37th Street Hibbing MN USA 55746

Dan Onea Mining Technologies International 25 Fielding Road Sudbury, Ontario P3Y 1L7

JP Ouellette Kubota Canada Ltd., 5900 14th Avenue Markham, Ontario L3S 4K4 Bus: (306) 257-2122 Fax: (306) 257-4240 email: <u>John.McLeod@potashcorp.com</u>

Bus: (705) 692-2348 email: <u>guy.montpellier@vale.com</u>

Bus: (306) 933-7594 Fax: (306) 933-7339 email: <u>colin.morrish@gov.sk.ca</u>

Bus: (307) 872-2477 email: <u>brian.hooten@fmc.com</u>

Bus: (585) 295-1510 Fax: (585) 295-1515 email: <u>ummstafa@airflowcatalyst.com</u>

Bus: (204) 687-2056 Fax: (204) 687-2358 email: <u>John.Nose@hudson</u>bay minerals.com

Bus: (819) 472-8064 Fax: (866) 407-5371 email: johara@mesabi.com

Bus: (705) 692-3661 email: <u>dan.onea@mti.ca</u>

Bus: (905) 292-7477 Fax: (905) 294-1554 email: jouellette@kubota.ca Brian Pare Pogo Mine PO Box 145 Delta Junction, Alaska USA 99737

Fred Pelletier Vale, Creighton Mine 18 Rink Street Copper Cliff, Ontario P0M 1N0

Dale Rakochy Sandvik Mining 100 Magill Street Lively, Ontario P3Y 1K7

Terry Rhiley Barrick Cortez Hills Underground HC 66 box 1250 Crescent Valley, Nevada USA 89821-4267

Travis Rideout Hudson Bay Mining & Smelting Box 1500 Flin Flon Manitoba R8A 1N9

Brent Rubeli CANMET - MMSL 1 Haanel Dr., Bldg. 9 Nepean Ontario K1A 1M1

Dave Schmidt Industrial Fabrication Inc.

Robert Setren Macs Mining Repair Inc. 225 West 400 South Huntington UT USA 84528

Scott Shears Xstrata Copper – Kidd Creek Mine 11335 Highway 655 North Timmins, Ontario P4N 7K1

Rick Shulist Ministry of Labour 217 York Street, 5th Floor London, Ontario N6A 5P9 Bus: (907) 895-2744 email: <u>brian.pare@smmpogo.com</u>

Bus: (705) 966-4169 Fax: (705) 690-9346 email: <u>fred.pelletier@vale.com</u>

Bus: (705) 692-7335 Cell: (705) 677-7221 email: <u>dale.rakochy@sankvik.com</u>

Bus: (775) 468-4267 email: <u>trhiley@barrick.com</u>

Bus: (204) 689-2193 Fax: (204) 687-2358 email: <u>travis.rideout@hudsonbayminerals.com</u>

Bus: (613) 996-6285 Fax: (613) 996-2597 email: <u>brubeli@nrcan.gc.ca</u>

Bus: (705) 623-1621 email: dschmidt@minecat.com

Bus: (435) 687-2244 email: <u>rsetren@gmail.com</u>

Bus: (705) 267-8821 Fax: (705) 267-8709 email: <u>sshears@xstratacopper.ca</u>

Bus: (519) 646-3249 Fax: (519) 672-0268 email: Rick.Shulist@ontario.ca Branden Sitterud Macs Mining Repair Inc. 225 West 400 South Huntington UT USA 84528

Joe Stachulak Vale 17 Rink Street Copper Cliff, Ontario P0M 1N0

Maria Stanciulescu Natural Resources Canada CanmetENERGY 1 Haanel Drive Nepean, Ontario K1A 1M1

Glenn Staskus Ministry of Labour 933 Ramsey Lake Road Sudbury, Ontario P3E 6B5

John Stekar Catalytic Exhaust Products Ltd 30 Intermodal Drive Brampton, Ontario L6T 5K1

Evelynn Stirling Cummins Inc. 500 Jackson Street MC 60022 Columbus, Indiana USA 47201

Grant Sutherland The Canadian Salt Company Ltd. 755 St-Jean Blvd., Suite 700 Pointe-Claire, Quebec H9R 5M9

Mark Sytryk USW 6166 19 Elizabeth Drive Thompson, MB R8N IS7

Darren Tasker Volvo Penta of the Americas, LLC 1300 Volvo Penta Drive Chesapeake, VA USA 23320 Bus: (435) 687-2244 email: <u>branden_mrs@yahoo.com</u>

Bus: (705) 682-5266 Fax: (705) 682-7190 email: joe.stachulak@vale.com

Bus: (613) 943-0103 email: <u>mastanciu@nrcan.gc.ca</u>

Bus: (705) 670-5706 Fax: (705) 670-5698 email: <u>Glenn.Staskus@ontario.ca</u>

Bus: (905) 799-9770 Fax: (905) 799-9771 email: <u>cep89@aol.com</u>

Bus: (812) 377-6145 Fax: (812) 377-5179 email: <u>evelynn.j.stirling@cummins.com</u>

Bus: (514) 630-0900 email: <u>gsutherland@windsorsalt.com</u>

Bus: (204) 778-2579 email: <u>mark.sytryk@vale.com</u>

Bus: (757) 436-5124 Cell: (757) 352-8178 email: <u>Darren.tasker@volvo.com</u> email: <u>karsten.taudte@cummins.com</u>

Karsten Taudte Cummins Inc. Am markt 15A 0171 – 3065136 99510 Ossmannstedt Germany

Darcy Thomson John Deere Power Systems 294 Hunter Road Grimsby, Ontario L3M 4H5

Greg Tremaine Deutz Corporation 3883 Steve Reynold Blvd Norcross, Georgia

Dane Tress Potash Corp. Allan Division Box 301 Allan, SK S0K 0C0

Dee Wise MTU 39525 Mackenzie Drive Novi, MI USA 48377

David A. Young CANMET - MMSL 1 Haanel Dr., Bldg. 9 Nepean, Ontario K1A 1M1 Bus: (905) 945-7350 email: <u>thomsondarcya@johndeere.com</u>

Bus: (770) 331-2074 email: <u>tremaine.g@deutzusa.com</u>

Bus: (306) 257-2122 Fax: (306) 257-4240 email: <u>Dane.Tress@potashcorp.com</u>

Bus: (248) 560-8598 email:deanne.wise@tognum.com

Bus: (613) 943-9265 Fax: (613) 996-2597 email: <u>davyoung@nrcan.gc.ca</u>

	Displacement(L)	2003	2004		2005	2	006	2007	2008		2009	2010		2011	2012
0-116	0.065 < L < 0.225		Tier	2 (16.	1 / 549)				Tier 3 (10.0 / 549)						
California State (CARB)	0.225 L			Tier	2 (12.1 /	549)						Tier 3 (8.0 /	549	9)	
0.000(0.0.02)	19kW L 1.0							Tie	r 2 (12.1 /	549)					
	0.065 L<0.1		Tier 2 (40.0 / 610)											Tier 3	
U.S. 50 State	0.1 L<0.225	Tier 2 (16.1								1 / 610) Ti					Tier 3
(EPA)	0.225 L	15.0/610	13.6/6	610					(12.1 / 610	2.1 / 610)				Tier 3 (8.0/610) (Planning)	
	19kW < L < 1.0	15.0/610	13.6/6	510	Tier 2 (12.1 / 610)							Tier 3 (8.0/610) (Planning			
	0.066 L<0.1								Т	ier 2	(40.0 / 610)				
Canada	0.1 L<0.225							Tier 2 (40.0 / 610)							
	0.225 L					Tier 2 (40.0 / 610)									
JPN	0.066 L<0.1	1st Voluntary regulation (40.0 / 519 ³) 2nd Voluntary re								luntary reg. ((40.0 / 610 ³)				
(LEMA)	0.1 L<0.225	1st Voluntary regulation (16.1 / 519 ³)							2nd Voluntary reg. (16.1 / 610 ³)						
(,	0.225 L<1.0	1st Voluntary regulation (13.4 / 519 3)						2nd Voluntary reg. (12.1 / 610 ³)							
EU	0.066 L<0.1		4	0.0 / 5 [,]	19 ³				8	Stage	(40.0 / 6	10 ³)			
(2002/88/EC)	0.1 L<0.225			5	Stage (519 ³)		Stage (16.1 / 610 ³)							
(,	0.225 L			1:	3.4 / 519	3					Stage (1)	2.1 / 6 10 ³)			
3	1st Regulation for N	ew engine /	2nd Reg	ulation	for <u>in-us</u> CAR EPA CAN JPN	1st B		2nd	3rd						

Cui	rren	t &	Fu	ıtu	re	En	าเร	sio	ons	Re	gul	atic	on (ΈL	り
Model Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014		2015
EU Directive 2004/26/	EC (4/30/04	Official J	ournal)	Plac	cing On	the ma	rhet			() Note:	(NOx or <u>NC</u>	<u>x+NMHC</u> /PN	1) or (NOx / H	C/PM)	Uhit: g/kWh
0 <p<8< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>I</td><td>1</td><td></td><td></td><td></td><td></td><td></td></p<8<>									I	1					
8≦P<18(19)													1		
18(19)≦P<37	9	Stage II (8	<mark>30/1.5</mark> ,	/ 0.8)						Stag	pelllA(<u>7.</u>	5 / 0.6)			
18(19) ≧ P<3/		Co	nstant	Speed	Engine	Sta	ge <i>II (</i> 8	0/ 1.5 /	0.8)			Stage III /	A (<u>7.5</u> /0	26)	
37≤P<56	Stage I (9.2/	1.310.85)	Stag	je II (7.0	<mark>)/1.3/(</mark>	14)		Stag	eIII A (<u>47</u> /04	4)	S	tage III B	(<u>47</u> /0	025)
		Co	nstant	Speed	Engine		Stage I	<mark> (7.0/1</mark>	<mark>.3/0.4</mark>)		Stage	III A <u>(4.7</u>	/0.4)	
56≦P<75	Stage (9.2/1.3/		Stag	ge II (7.0)/1.3/0	24)	Sta	ige III A	(<u>47</u> /	0.4)	Stage III	B(3.3⁄0.19	V0.025)		tage IV 0.19/0.025)
		C	nstant	Speed	Engine		Stage I	<mark> (7.0/1</mark>	<mark>.3/0.4</mark>)		Stage	III A (<u>47</u>	/0.4)	
75≦P<130	Stage I (9.2/1.3/0.7)	Stag	ell (6.0	0/1.0/0	23)		Stage	III A (<u>4</u>	<u>.0</u> /0.3)		Stage III	B(33⁄0.19	V0.025)		tage IV 0.19/0.025)
		8	nstant	Speed	Engine	Sta	ge <i>II (</i> 6.	0/1.0/	0.3)			Stage III A	(<u>40</u> /0	3)	
Fuel Sulfur			2000ppn	n		-					1000	opm			
(Test Riel Suffir)			Tec	hnical R	eview	300)ppm (Sta	qe III A)			1	Oppm (Stage	III B & IV)		

	nerator (CPCB	Reu.)						
Stage	Category	Effective Date	CO (g/kW•h)	HC (g/kW		NOx (g∕kW•h)	PM (g/kW•h)	Smoke (m ⁻¹)
-	Test Met	ISO D2						
	kW≤19	July-2004	3.5	1.3		9.2	0.3	0.7
-	19 < kW ≤ 50	July-2004	3.5	1.3		9.2	0.3	0.7
Ag Tracto	r (CMVR Reg.)						
Ag Tracto Stage	r (CMVR Reg.) Effective Date	CO (g/kW•	h)		+NOx ⟨W+h)	PM (g/k₩∙h)	Smoke (m ⁻¹)
-		Effective Date		h)	(g/k			(m ⁻¹)
-	Category	Effective Date	(g/kW•	h)	(g/k	(W+h) D C1	(g/kW•h)	(m ⁻¹) IS 12062-19 3.25
Stage Bharat	Category Test Me	Effective Date		h)	(g/k	(W∙h)		(m ⁻¹) IS 12062-19
Stage Bharat	Category Test Me Tractor	Effective Date	(g/kW•	h)	(g/k ISC 1	(W+h) D C1	(g/kW•h)	(m ⁻¹) IS 12062-19 3.25

	sions Regu		Crima	(Stanuar	us)	
Net Power	Dat	ie	со	нс	NOx	РМ
kW	Application Acceptable	Effective date		Standards	s (g/kWh)	
		Str	age I			
75 ≤ P < 130	2007.10.1	2008.10.1	5.0	1.3	9.2	0.7
37 ≤ P < 75	2007.10.1	2008.10.1	6.5	1.3	9.2	0.85
18 ≤ P < 37	2007.10.1	2008.10.1	8.4	2.1	10.8	1.0
8 ≤ P < 18	2007.10.1	2008.10.1	8.4	12	2.9	-
0 < P < 8	2007.10.1	2008.10.1	12.3	18	3.4	-
		Str	age II			
75 ≤ P < 130	2009.10.1	2010.10.1	5.0	1.0	6.0	0.3
37 ≤ P < 75	2009.10.1	2010.10.1	5.0	1.3	7.0	0.4
18 ≤ P < 37	2009.10.1	2010.10.1	5.5	1.5	8.0	0.8
8 ≤ P < 18	2009.10.1	2010.10.1	6.6	9	.5	0.8
0 < P < 8	2009.10.1	2010.10.1	8	10).5	1.0

	C	ategories	Emis	sions	Standa	and(q/k₩h)	Furoo	ean Union	Tu	rkev
			CO	HC	Nox	PM		al Effective Date	Type Approval	
• •	В	75⊲P<130	50	13	92	07	June 30 98	Dec 31 98		May 4 03
Stagel	C	37 <u>4</u> P<75	65	13	92	0.85	June 30 98			May 4 03
	E	75 <u>≺</u> P<130	35	10	60	02	Dec 31 00	Dec 31 01		Jan 1 07
Stgaell	F	37 <u><</u> ₽<75	50	10	60	03	Dec 31 01	Dec 31 02		Jan 1 07
	G	18 <u>∢</u> P<37	50	13	70	0.48	Dec 31 02	Dec 31 03		Jan 1 07
								D 01 DD		D 04 D0
C.4mm. 1114	<u> </u>	75 <u>≺</u> P<130	50	4	-	03	Dec 31 05		_	Dec 31 09
Stage IIA		<u>37<</u> ₽<75	50 55	4	-	04	Dec 31 06			Dec 31 09
	K	<u>18</u> _P<37	55		5	du	Dec 31 05	Dec 31 06		Dec 31 09
	М	75⊲P<130	50	0.19	33	0.025	Dec 31 10	Dec 31 11		Dec 31 11
Stage IIB	N	<u>56</u> <₽<75	50		33	0.025	Dec 31 10			Dec 31 11
	P	37<₽<56	50	4		0.025	Dec 31 11	Dec 31 12	1	Dec 31 12

	t of Cooled EGR & Aftertreatmer 4 QSB6.7	nt for
	Estimated Change from Tier 3	
Heat Rejection to Coolant	40% increase	
Heat Rejection to CAC	25% decrease	
Engine Package	Addition of cooled EGR components	
Aftertreatment Size	~ 12 inch diameter X 27 inch long canned with inlet & outlet sections	
System Weight	Engine ~ 1180 (wet) Aftertreatment ~ 85 lb	Cumanins

Engines Pre-designed For Final

- Tier 4 Interim engines pre-designed for Final
- No significant change to engine installation envelope
- Ready to integrate with incremental SCR aftertreatment

QSB6.7 GT174hp	Т3	T4i	T4F
ECM	CM850	CM2250	CM2350
Fuel pressure	1600 bar	1800 bar	2200 bar
Turbocharger	WGT	VGT	VGT
NOx control	DSA	Cooled EGR	Cooled EGR + SCR
Crankcase ventilation	OCV, impactor only	OCV, coalescing filter	OCV, coalescing filter
Aftertreatment	None	DOC+DPF	DOC+SCR

ECMCM850CM2250CM2350Fuel pressure1600 bar2100 bar2100 bar	
Fuel pressure 1600 bar 2100 bar 2100 bar	
Turbocharger WGT VGT VGT	
NOx Control DSA Cooled EGR Cooled EGR	२ +
Crankcase OCV, impactor OCV, Coalescing filter OCV, coalescing filter	ilter
Aftertreatment None DOC+DPF DOC+SCR	

D5	DT										
Product or Product Variant	Product (kW) (rpm) torque (rpm)	Product or Product Variant	Max power (kW)	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)					
TAD560VE	129	2300	663	1100-1700	4	TAD761VE	160	2200	1178	1200	
TAD561VE	155	2300	823	1200-1700		TAD762VE	185	2200	1178	1200-1400	
	1.000	1	- 0		100	TAD763VE	210	2200	1178	1200-1700	
	1		101	1000	2	TAD764VE	225	2200	1250	1200-1700	
D13	241		-	The.		TAD765VE	235	2200	1300	1200-1700	
Product or Product Variant	Max power (kW)	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)		D16		1			
TAD1360VE	256	1900	1740	1100-1400		Product or Product	Max power	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)	
TAD1361VE	285	1900	1940	1100-1400	2	Variant	(kW)				
TAD1362VE	315	1900	2140	1100-1400		TAD1660VE	405	1900	2700	950-1430	
TAD1363VE	345	1900	2345	1100-1400		TAD1661VE	450	1900	2855	960-1500	
TAD1364VE	375	1900	2550	1100-1400		TAD1662VE	515	1800	3160	1000-1555	
TAD1365VE	405	1900	2650	1100-1400		TAD1643VE*	565	1900	3287	1200	
				Statement of the second			*Engines	above 560 l	Ware n	ot regulate	

		SCR Eng	ine Rang	ge	
	5L	7L	13L	16L	
	TAD560VE TAD561VE	TAD761VE TAD762VE TAD763VE TAD764VE TAD765VE	TAD1360VE TAD1361VE TAD1362VE TAD1363VE TAD1364VE TAD1365VE	TAD1660VE TAD1661VE TAD1662VE TWD1663GE TWG1663GE *	
	A Airto- ₩= Water Dissplace Generat Version Type of G= Gen S	intercooling air to-air tel tel ton application		*US Market only (Bi-Fuel)	
Volvo Penta					VOLVO

D5						D8								
Product or Product Variant	Max power (kW)	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)	Product or Product Variant		luct	Max power (kW)	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)			
TAD570VE	105	2200	700	1000	TAD870VE		160	2200	1050	1000				
TAD571VE	129	2200	800	1100	TAD871VE		185	2200	1150	1100				
TAD572VE	160	2200	900	1200	TAD872VE		210	2200	1250	1100				
	1			and the second	-	TAD87	3VE	235	2200	1300	1200			
	D11 Varian		170VE	0VE 235	(rpm) 2000		(Nm) 1550	900						
		TAD11	-	265	-	2000	1750	950						
D13			1.1	K.		D10	6	10 7	WR					
Product or Product Variant	Max power (kW)	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)	Product or Product Variant		duct	Max power (kW)	@ speed (rpm)	Peak torque (Nm)	@ speed (rpm)			
TAD1371VE	285	1900	1925	945	TAD1670VE		70VE	405	1900	2700	950			
TAD1372VE	315	1900	2130	970	TAD1671VE		71VE	450	1900	2900	960			
TAD1373VE	345	1900	2330	1000	TAD1672VE		72VE	515	1800	3150	1000			
TAD1374VE	375	1900	2540	1100				Unregulated	onginog ovo	ilabla abr	NO FEOK			
TAD1375VE	405	1900	2590	1150				Unregulated	engines ava		JVE SOUKV			

Agenda

- Introduction of Volvo Group and Volvo Penta
- SCR approach for Tier 4
- Characteristics of Urea (Adblue or DEF)
- Operational benefits of Volvo SCR based engines
- Current range, stage 3b, engines and technology
- Future engine range, Stage 4, engines and technology
- Mining certification
- Installation and factory support
- Global Aftermarket support
- Summary and conclusion
- Questions

127

Agenda

- Introduction of Volvo Group and Volvo Penta
- SCR approach for Tier 4
- Characteristics of Urea (Adblue or DEF)
- Operational benefits of Volvo SCR based engines
- Current range, stage 3b, engines and technology
- Future engine range, Stage 4, engines and technology
- Mining certification
- Installation and factory support
- Global Aftermarket support
- Summary and conclusion
- Questions

Agenda

- Introduction of Volvo Group and Volvo Penta
- SCR approach for Tier 4
- Characteristics of Urea (Adblue or DEF)
- Operational benefits of Volvo SCR based engines
- Current range, stage 3b, engines and technology
- Future engine range, Stage 4, engines and technology
- Mining certification
- Installation and factory support
- Global Aftermarket support
- Summary and conclusion
- Questions

133

EPA N	loni	oac	l Die	esel	Em	issi	on l	Regi	ulat	ion	s Ti	er 1	- 4				П	ne engli	ne com	ipany.	Å.
								Re	egula	ated	Emi	ssions	6:		c / HC x + H						
Power	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016 2017
HP<11						[7.8]/6.0/0	0.75		[5.6	6.0 /	0.60				I	5.6] / 6.	0 / 0.30			
11≤HP<25						[7.1]]/4.9/0	0.60		[5.6	6] / 4.9 /	0.60				I	5.6] / 4.	9 / 0.30			
25≤HP<50					[7.1]]/4.1/	0.60			[5.6] / 4	1 / 0.4	5		[5.6	6] / 4.1 / 0).22			[3.	5] / 4.1 /	0.02
50≤HP<75				L	6.9 /	11				[5.6] / 3	8.7 / 0.3	0			[3.5] / 3.1] / 3.7 / 0				[3.	5] / 3.7 /	0.02
75≤HP<100					6.9 /	11				[5.6] / 3	8.7 / 0.3	0			.7 / 0.30		2.5 / 0	.14 / 3.7	7 / 0.01		
100≤HP<175	 			6.9 /	11			[4	4.9] / 3	.7 / 0.22			[3.0] / 3.7 / (0.22		2.5 / 0	.14 / 3.7	/ 0.01	0.30/0).14 / 3.7 / 0.0
175≤HP<300			6.9 /	1.0 / 8.5	5/0.4			[4.9]	/ 2.6 /	0.15											
300≤HP<600		6.9 /	1.0 / 8.5	5/0.4			[4.8]	/ 2.6 / 0	.15			[3.0] / 2.6 /	0.15		1.5 / 0	.14 / 2.6	/ 0.01	0.	30 / 0.14	/ 2.6 / 0.01
600≤HP<750		6	6.9 / 1.0	/ 8.5 / 0	.4			[4.8] / 2.6	6 / 0.15												
Nonroad Diesel Fuel Sulfur Level						5000 p	opm						500	ppm				15	ppm		
			Tier 1				Tier 2				Tier 3	1		Tier	4 Interi	m / Alt	Nox]		Tier 4	Final
																					140

DPF Function		Operator Display		Performance	Message via CAN
DPF Threshold	DPF Function lam	D Engine warning lamp	Message	degradation	bus (J 1939)
DPF loading phase	none	none	None	none	none
DPF Regeneration requirement	blinking 📲	none	Regeneration in xx minutes	none	Regeneration in xx minutes
DPF Regeneration	continuous	none	Regeneration	none	Regeneration
DPF Regeneration finalized	none	none	none	none	none
DPF overloading xx - yy%	blinking 📲	s continuous	Regeneration not completed, Torque degrading	Torque degrading xx%**	Regeneration not completed, Torque degrading xx%**
DPF overloading >yy%	flashing	blinking	Power shut-off	Engine shut- off	Engine shut-off
Push button = Manual mode - Regeneration request - Regeneration interrupt. - Regeneration interrupt.	blinking 📲	none	Regeneration request Regeneration release Regeneration interrupt. Regeneration inhibit	none	Regeneration request Regeneration release Regeneration interrupt. Regeneration inhibit

DEF (Urea) Threshold	Notificat	ion	Inducement
With Level Indicator	Lamp - or - I	Message	
>15% full	none	none	none
Stage 1 <15% full E F	DEF lamp solid	Warning message	none
Stage 2 <10% full E F	DEF lamp flashing (time duration – OEM Specified)	Increasing message duration and/or frequency	none
Stage 3 <5% full E F	DEF lamp flashing Amber warning lamp solid	Inducement message (* tank empty, 5Min till de-rating*)	none
Stage 4 5Min. After last warning	DEF lamp flashing Amber warning lamp flashing	Inducement message ("de-rating")	De-rating

Customer Imp	act:			
	Tier 2/3 Baseline	Generation 1 VR Package	Generation 2 VR Package + DPF	
Fuel spec (sulfur ppm)	500 ppm	500 ppm	15 ppm	
Bio fuel	B20	B20	B20	-
Fuel consumption	Baseline	3-7% Improvement	3-7% Improvement	_
Required oil spec	ECF-2 (CI-4)	ECF-2 (CI-4)	ECF-3 (CJ-4)	
Oil change interval	Baseline	Baseline	Baseline	_
DPF cleaning	N/A	N/A	N/A	_
CRS Service Kit	N/A	N/A	N/A	_
Overhaul life	Baseline	Baseline	Baseline	-
Overhaul parts required	Baseline	Baseline	Baseline	_

Customer Imp	act:			
	Tier 2/3 Baseline	Generation 1 VR Package	Generation 2 VR Package + DPF	Generation 3 Tier 4 Technology
Fuel spec (sulfur ppm)	500 ppm	500 ppm	15 ppm	15 ppm
Bio fuel	B20	B20	B20	B20
Fuel consumption	Baseline	3-7% Improvement	3-7% Improvement	Up to 5% improvement
Required oil spec	ECF-2 (CI-4)	ECF-2 (CI-4)	ECF-3 (CJ-4)	ECF-3 (CJ-4)
Oil change interval	Baseline	Baseline	Baseline	Baseline
DPF cleaning	N/A	N/A	N/A	5,000 hrs
CRS Service Kit	N/A	N/A	N/A	5,000 hrs
Overhaul life	Baseline	Baseline	Baseline	Baseline
Overhaul parts required	Baseline	Baseline	Baseline	DPF Exchange, CRS Kit

Engines for Underground Mining

Dee Wise Underground Mining Sales deanne.wise@mtu-online.com Office: 248-560-8598 Cell: 313-506-4623

	Engine	Configuration (Cyl./ Inline or V)	Total Displacement (I)	kW			Emission Strategy
	Series 1000	4, 6 / Inline	5.1, 7.7	100-260	134-348	2200	
	Series 1100	6 / Inline	10.6	280-320	375-429	1700	1
fier 4 final	Series 1300	6 / Inline	12.8	340-380	456-509	1700	EGR + SCR
	Series 1500	6 / Inline	15.6	400-460	538-616	1700	1
1730		MTU S 110	1 0 d	MTU S 130		-	ITU S 1500

	Tier 2	Tier 3	Tier 4i	Tier 4f
000	NOT REQUIRED!!!			
DPF	NOT REQUIRED!!!			
EGR				Cooled EGR
SCR			5	SCR
Turbo		Single st	age*	
Control system	С	ommon Electro	nic Platform	
Fuel injection	Pump-Line-Nozzle	(S60 with Unit I	niection)	Common rail

