

17th ANNUAL MDEC CONFERENCE Toronto Airport Marriott Hotel, Canada October 4 – 7, 2011

MDEC DIESEL WORKSHOP HEALTH EFFECTS AND DIESEL ENGINES

PRESENTED BY: Dr. Sandra Dorman of Laurentian University Dr. Renaud Vincent of Health Canada Steve "Skiner" Forbush of Arch Coal Troy Terrillion of Newmont Mining Brent Rubeli of Natural Resources of Canada

COORDINATED BY: Mahe Gangal and David Young of NRCan

OCTOBER 4, 2011

MDEC Diesel Workshop

Health Effects and Diesel Engines

Toronto Airport Marriott Hotel Ontario, Canada

Tuesday, October 4, 2011

- 07:30 08:30 Breakfast and registration
- **08:30 12:00** Welcome Mahe Gangal, Co-chair MDEC Conference Introduction of speakers – JP Ouellette, Co-chair MDEC Conference

Health Effects of Diesel Exhaust

- Structure of the respiratory tract, and introduction to cancer, Dr. Sandra Dorman, Laurentian University
- Toxicity of diesel exhaust, Dr. Renaud Vincent, Health Canada
- 08:30 12:00 Lunch

13:00 – 16:30 New Technology Diesel Engines

- Advanced diesel engines for mines, Steve "Skinner" Forbush, Arch Coal, and Troy Terrillion, Newmont Mining
- Field emissions testing: Best practices, test and maintenance, Brent Rubeli, Natural Resources Canada
- Discussion and Conclusion, David Young, Secretary and Treasurer MDEC

MDEC Diesel Workshop

Health Effects and Diesel Engines

Toronto Airport Marriott Hotel Ontario, Canada

Tuesday, October 4, 2011

Contents

Diesel workshop agenda Table of contents List of workshop attendees

Health Effects of Diesel Exhaust

- Section 1 Structure of the respiratory tract, and introduction to cancer, Dr. Sandra Dorman, Laurentian University
- Section 2 Toxicity of diesel exhaust, Dr. Renaud Vincent, Health Canada

New Technology Diesel Engines

- Section 3 Advanced diesel engines for mines, Steve "Skinner" Forbush, Arch Coal, and Troy Terrillion, Newmont Mining
- Section 4 Field emissions testing: Best practices, test and maintenance, Brent Rubeli, Natural Resources Canada

Workshop Registration Address List

Cheryl Allen Vale 18 Rink Street Copper Cliff, Ontario P0M 1N0

Omibaron Audifre Cargill Deicing Technology 2400 Ships Channel Cleveland Ohio USA 44113

Brett Andrews Cummins Eastern Canada 330 Aubrey St., North Bay, Ontario P1B 6H9

William Bailey Vale 4149 Heritage Ave. Hanmer, Ontario P3N 1Z6

Mathew Brass United Steel Workers Local 6166 19 Elizabeth Drive Thompson Manitoba R8N 1A2

Jeffery Bierman Cargill Deicing Technology 2400 Ships Channel Cleveland Ohio USA 44113

Brendan Black DCL International Inc PO Box 90 Concord, Ontario L4K 1B2

Aleksandar Bugarski NIOSH Office of Mining Health & Safety Research 626 Cochrans Mill Rd. Pittsburgh, PA USA 15236

Jamie Cresswell Vale Sudbury, Ontario Bus: (705) 682-6857 Fax: (705) 682-5312 email: cheryl.allen@vale.com

Bus: (216) 357-4616 email: <u>Jeffery_bierman@cargill.com</u>

Bus: (705) 497-1019

email: brett.andrews@cummins.com

Bus: (705) 699-4086 email: <u>bill.bailey@vale.com</u>

Bus: (204) 677-1700 Fax: (204) 677-3267 email: <u>Mathew.Brass@vale.com</u>

Bus: (216) 357-4616 email: <u>Jeffery_bierman@cargill.com</u>

> Bus: (905) 660-6450 email: <u>bblack@dcl-inc.com</u>

> > Bus: (412) 386-5912 Fax: (412) 386-4917 email: abugarski@cdc.gov

Bus: (705) 692-2600 email: jamie.cresswell@vale.com Shahn Cybulski Goldcorp, Porcupine Gold Mines 4315 Gold Mine Road South Porcupine Ontario P0N 1H0

Abi Dhingra Nett Technologies Inc. 2-6707 Gorway Drive Mississauga, Ontario L4V 1P7

Sandra Dorman Laurentian University 635 Ramsey Lake Rd., Sudbury, Ontario P3E 2C6

Manfred Duering Cummins Inc. Peter Traiseer – Strasse 1 Gross Gerau Germany 64521

Ron Duguay Vale 60 Mine Road Garson Ontario P3L 1N6

Danielle Dunn PCS Allan Division Box 301 Allan, Sask S0K 0C0

Karen Eccles DCL International Inc PO Box 90 Concord, Ontario L4K 1B3

Leslie Ellsworth United Steel Workers Local 6166 19 Elizabeth Drive Thompson Manitoba R8N 1A2

Nick Espenberg Agrium Inc.

Steve Forbush Arch Coal 350 N 400 W Aurora Utah USA 84620 Bus: (705) 235-3221 email: <u>shahn.cybulski@goldcorp.com</u>

> Bus : (905) 672-5453 Fax: (905) 672-5949 email: adhingra@nett.ca

Bus: (705) 675-1151 Fax: (705) 675-4845 email: sdorman@laurentian.ca

email: Manfred.duering@cummins.com

Bus: (705) 699-4727 Fax: (705) 699-4750 email: <u>ron.duguay@vale.com</u>

Bus: (306) 257-2110 Fax: (306) 257-420 email: <u>Danielle.dunn@potashcorp.com</u>

> Bus: (905) 660-6450 email: <u>keccles@dcl-inc.com</u>

Bus: (204) 677-1700 Fax: (204) 677-3267 email: <u>Les.Ellworth@vale.com</u>

Bus: (306) 683-1606 email: <u>nick.espenberg@agrium.com</u>

> Bus: (435) 654-8389 email: sforbush@archcoal.com

Guy Fugate Cargill Deicing Technology 2400 Ships Channel Cleveland Ohio USA 44113

Paul Grylls DCL International Inc PO Box 90 Concord, Ontario L4K 1B3

Kalsi Harsimran Ministry of Labour 159 Cedar St., Suite 301, Sudbury, Ontario P3E 6A5

Laszlo Hegedus Blutip Power Technologies Ltd 4-6705 Millcreek Drive Mississauga, Ontario L5N 5M4

Ryan Jaeger L&M Radiator 1414 East 37th St. Hibbing, Minnesota USA 55746

Seppo Karhu Sandvik Mining and Construction Vahdontie 19 Turku Fi – 20101 Finland

Brian Keen Vale, Creighton Mine 1039 Regional Road 24 Lively, Ontario P3Y 1C3

Brian Kutschke Vale

Robert Lampe Cargill Deicing Technology 2400 Ships Channel Cleveland Ohio USA 44113

Alain Landry Xstrata Nickel (Sudbury) XPS Center 6 Edison Rd., Falconbridge, Ontario POM ISO Bus: (216) 357-4616 email: <u>Jeffery_bierman@cargill.com</u>

> Bus: (905) 660-5450 email: pgrylls@dcl-inc.com

Bus: (705) 564-7177 Fax: (705) 564-7437 email: harsim.kalsi@ontario.ca

Bus: (519) 497-3890 email: <u>1hegedus@blutipower.com</u>

> Bus: (218) 362-7513 email: <u>rjaeger@mesabi.com</u>

Bus: +358400775939 email: seppo.<u>karhu@sandvik.com</u>

Bus: (705) 692-2767

email: brian.keen@vale.com

Bus: (705)682-6368

Bus: (440) 357-4616 email: <u>Jeffery_bierman@cargill.com</u>

Bus: (705) 693-2761 Fax: (705) 699-3180 email: alandry@xstratanickel.ca Nick Larochelle USA Local 6500 66 Brady St., Sudbury, Ontario P3E 1C8

Al Laurich Vale Limited 18 Rink St. Copper Cliff, Ontario POM 1N0

John Le Tracks and Wheels Equipment Brokers Inc. PO Box 2592 Station A 400 Hwy 69 North Sudbury, Ontario P3A 4S9

Roger Lemieux RDH Mining Equipment 904 Hwy 64 PO Box 188 Alban, Ontario POM 1A0

Glenn Lyle Centre for Excellence in Mining Innovation WGMC 4th Floor 935 Ramsey Lake Road Sudbury, Ontario P3E 2C6

John McLeod PCS Allan Division Box 301 Allan, Sask S0K 0C0

Greg Mascioli Xstrata Copper – Kidd Creek Mine 11335 Highway 655 North Timmins, Ontario P4N 7K1

Guy Montpellier Vale – Creighton Mine 1030 Regional Rd., 24 Lively, Ontario P3U 1C3

Jean-Pierre Nosé Hudson Bay Mining and Smelting Co., 1 Company Road Flin Flon, Man. R8A 1N9

Douglas O'Connor Vale Limited 18 Rink Street Copper Cliff, Ontario P0M 1N0 Bus: (705) 675-3381 Fax: (705) 675-2438

Bus: (705) 699-4831 email: al.<u>laurich@vale.com</u>

Bus: (705) 566-5438 Fax: (705) 566-5422 email: jle@tracksandwheels.com

Bus: (705) 857-2154 Fax: (705) 857 3583 email: roger@rdminingequipment.com

> Bus: (705) 673-6568 Fax: (705) 671-3878 email: glyle@miningexcellence.ca

Bus: (306) 257-2104 Fax: (306) 257-4140 email: <u>John.McLeod@potashcorp.com</u>

> Bus: (705) 678-8712 email: <u>gmascioli@xstratacopper.ca</u>

Bus: (9705) 692-2301 email: todd.vandenden@vale.com

Bus: (204) 687-2056 Fax: (204) 687-2378 email: <u>John.Nose@hudson</u>bay minerals.com

> Bus: (705) 682-5297 Fax: (705) 682-5312 email: doug.o'connor@vale.com

Jake O'Hara L&M Radiator 1414 East 37th Street Hibbing MN USA 55746

JP Ouellette Kubota Canada Ltd., 5900 14th Avenue Markham, Ontario L2S 4K4

John Petherick Xstrata Nickel 85 Regional Road 8 Onaping, Ontario POM 2R0

John Popik Nett Technologies Inc. 2-6707 Gorway drive Mississauga, Ontario L4V 1P7

Kumarathasan Premkumari Health Canada 0803C Tunney's Pasture Ottawa, Ontario K1A 0K9

David Shoemaker Getman Corp. 59750 34th Avenue Bangor MI 49013 USA

Rick Shulist Ministry of Labour 217 York Street, 5th Floor London, Ontario N6A 5P9

Jozef Stachulak Vale 17 Rink Street Cooper Cliff, Ontario P0M 1N0

Glenn Staskus Ministry of Labour 933 Ramsey Lake Road Sudbury, Ontario P3E 6B5 Bus: (819) 472-8064 Fax: (866) 407-5371 email: johara@mesabi.com

Bus: (905) 292-7477 email: jouellette@kubota.ca

Bus: (705) 966-3411 Fax: (705) 966-6590 email: jpetherick@xstratanickel.ca

> Bus: (905) 672-5453 Fax: (905) 672-5949 email: jpopik@nett.ca

Bus: (613) 957-0209 Fax: (613) 946-2600 email: premkumari.kumarathasan@hc-sc.gc.ca

> Bus: (269) 427-5611 Fax: (269) 427-8781 email: <u>dshoe@getman.com</u>

Bus: (519) 646-3249 Fax: (519) 672-0268 email: Rick.Shulist@ontario.ca

Bus: (705) 682-5266 Fax: (705) 682-5312 email: <u>Joe.Stachulak@vale.com</u>

Bus: (705) 670-5706 Fax: (705) 670-5698 email: glenn.staskus@ontario.ca Evelynn Stirling Cummins Inc. 500 Jackson Street MC 60022 Columbus, Indiana USA 47201

Karsten Taudte Cummins Inc. Peter- Traiser – Strasse 1 Gross Gerau Germany 64521

Troy Terrillion Newmont Mining Corp. 1655 Mountain City Highway Leeville Mobile Maintenance Elko NV USA 89801

Scott Ulven Agrium

Joe Vaudry Vale – Creighton Mine 2039 Regional Road 24 Lively, Ontario P3Y 1C3 Bus: (812) 377-6145 Fax: (812) 377-5179 email: <u>evelynn.j.stirling@cummins.com</u>

Bus: +49-6152-174187 email: <u>karsten.taudte@cummins.com</u>

Bus: (775) 778-2149

email: troy.terrillion@newmont.com

Bus: (306) 683-1250

Bus: (705) 692-2345 email: <u>anita.demers@vale.com</u>

S1- 3

EFFECT OF PHYSICAL ACTIVITY

Total deposition will generally increase in proportion to increases in minute ventilation.

Generally, we see an increase in upper airway deposition with increased airway velocity

Nose to mouth breathing is an important aspect

Health effects of different Air Quality Index (AQI) levels caused by fine particulate matter						
Category	AQI	Pollutant Concentration Breakpoints ($\mu g/m^3$)	Fine Particulate Matter (PM _{2.5})			
Very Good	0 - 15	0 - 11	Sensitive populations may want to exercise caution.			
Good	16 - 31	12 - 22	Sensitive populations may want to exercise caution.			
Moderate	32 - 49	23 - 45	People with respiratory disease at some risk.			
Poor	50 - 99	46 - 90	People with respiratory disease should limit prolonged exertion; general population at some risk.			
Very Poor	100 or over	91 or over	Serious respiratory effects even during light physical activity; people with heart disease, the elderly and children at high risk; increased risk for general population.			

S1- 16

Organization & year	Animal Data	Human Data	Overall evaluation
NIOSH '88	Confirmatory	Limited	Potential Occupational carcinogen
IARC '89	Sufficient	Limited	Probably carcinogenic to Humans
IPCD '96	Not evaluated	Not evaluated	Probably carcinogenic to humans
EPA '98	Demonstrated carcinogenicity	Consistent evidence for a causal association	DPM classified as a toxic air contaminant
NTP '00	Supporting animal & mechanistic data	Elevated lung cancer in occupationally exposed groups	DPM-reasonable anticipated to be a carcinogen
EPA '02	Adequate evidence for carcinogenicity	Probable human carcinogen	Probably human carcinogen (Group B1) "Likely to be carcinogenic to humans by inhalation" and this evaluation applies to environmental exposures."
	osta: Lung Biology in Health and Disease; Vol 204		

S1- 18

Health Canada Santé Canada

TOXICOLOGICAL TOOLS FOR INVESTIGATING THE TOXICITY OF DIESEL COMBUSTION EMISSIONS

Renaud Vincent PhD

Inhalation Toxicology Laboratory Hazard Identification Division Environmental Health Science and Research Bureau Radiation and Environmental Health Directorate

> MDEC Diesel Workshop Health Effects and Diesel Engines

> > Toronto, 4 October 2011

Ontario Medical Association 2000

Health Direct Costs

Attributable to air pollution

	2000	2015	Health care system Direct losses to en and employees	h \$600 million Iployers \$660 million
premature deaths hospital admissions a emergency room visits f minor illness day d	1,900	2,600 15,000 16,000 53 million	Indirect Costs	
	9,800 s 13,000 47 million		Pain and suffering Loss of life	\$5 billion \$4 billion
			Annual econor	Annual economic loss
			2000 2015	\$10 billion \$15 billion
				Health Canada

Passage of Inhaled Particles Into the Blood Circulation in Humans

A. Nemmar, DVM, PhD; P.H.M. Host, PhD; B. Vanquickenborne, MD; D. Dinsdale, PhD; M. Thomser, MD; M.F. Hoylaetts, PhD; H. Vanbilloen, PhO;L. Morteimans, MD, PhD; B. Nemery, MD, PhD *Background*—Pollution by particitates has been consistently associated with increased earthwascular mortificty and mortality. However, the mechanisms responsible for these effects are not well-effected.

Methods and Results—To exceed to what excert and how rapidly inhold pollutant particles pace into the cystemic size/biton, we recoursed, in 5 inelity voltatese, the distilution of radioactivity eters the inhelation of "Polinegro" an associate consisting methy of thefins 90m feedmattimelabeled carbon more field and the inhelation of thelation of the inhelation of the inh

Conclusions—We conclude that initialed 99mTe-labeled ultrafine carbon particles pass rapidly into the systemic circulation, and this process could account to the well-established, but poorly understood, extrapolanomary effects of air pollution. (*Circulation*, 2002;105:411.414.)

Technegeo consiste on an ecroeol acceptation of 90 m To labeled, ultrafine canton particles produced in an atmosphere of high-pully argon. It was considered that 100% of the Infield particles in Techneges ware labeled with 90 m to and that the across did not constant pertectionates (1004). The site of the individualized particles was of the order of 5 to 10 m, as we confirmed by electron microscopy of particles collected with a thermospheretic propiditor. However, particle supregaces were also seen. Infield thin of these particles enabled erabled static and dynamic images in multiple projections to be acquired.

COMPANY BRAD

30

S2- 11

Identification of Agents Responsible for Health Effects

In Vitro

- Cell culture models (human and animal cells)
- General cylotoxicity endpoints
- Pathophysiology-relevant endpoints
 (eg regulation of ET-1, ECE-1, ETER)
- Mechanistic studies
- High throughput analysis of potency (vs chemistry, geography, sources)
- Assessment of technological
 developments (eg emissions control)

In Vivo

- Inhalation studies with model particles
- Chemical modifications vs biological potency
- Validation of pathophysiology pathways
- Pre-clinical investigation
- Identification of new biomarkers of exposure and effects

Health Canada Santé Canada

Identification of Susceptibility Factors

Animal Studies

 Biological sensitivity models (spontaneous hyperlensive rats, stroke prone rats, hyperlipidemic rabbils or mice, heart ischemia models)

 Pharmacological modification of responses (ET receptor antagoniste, antioxidants)

- Strain effect on ET response (preproET-1 induction, ET&R inhibition, receptor sensitivity, doseand time-dependent changes vs genetic determinants)

Human Studies

 Ecological studies and cohorts studies (congestive heart failure patients, cardiac rahabilitation, pulmonary hypertension, pregnancy)

 Pharmacological modification of responses (ET receptor antagonists, antioxidants)

 Individual sensitivity (preproET-1 induction, ETHR inhibition, receptor sensitivity, dose- and time-dependent changes vs genetic determinants)

and the state of the	Fuel Identification	Method	Canola	Soy B100	Animal Tallow	
The Second States of the second	Density kg/m ³ @ 15 °C	ASTM D4052	882.7	884.8	877.0	
	Cetane No. D613	ASTM D613	52.3	54.7	66.7	
A TO LE DOOR	Carbon, %m	ASTM D5291	76.76	76.80	76.27	
	Hydrogen, %m	ASTM D5291	12.02	11.44	11.66	
A CONTRACTOR OF THE PARTY OF	Viscosity @ 40 °C. (cSt)	ASTM D445	4.382	4.242	4.737	
	Sulphur, ma/ka	ASTM D5453	4	1.0	14	
	Total Nitrogen, mg/kg	ASTM D4629	9.60	2.57	75.58	
	Ash, Sulphated, Mass %	ASTM D874	0.000	0.001	0.002	
	Cloud Point, deg C	ASTM D2 500	-8	0	12	
	Copper Corrosion	ASTM D130	1a	1a	1a	
War and a state of the state of	Flash Point, Deg C	ASTM D93, Procedure A	136.0	130.0	167.0	
	Carbon Residue, Mass %	ASTM D4 530	0.000	0.001	0.001	
	Acid Number mg KOH/g	ASTM D664	0.26	0.27	0.40	
The second s	Free Glycerine, mass %	ASTM D6 584	<0.001	<0.001	0.001	
CAN FREE ALCONNER AND AND AND	Total Glycerine, mass %	ASTM D6584	0.102	0.134	0.061	
	Monoglycerides, mass %	ASTM D6584	0.319	0.483	0.152	
the second second second second second	Diglycerides, mass %	ASTM D6584	0.095	0.081	0.120	
	Triglycerides, mass %	ASTM D6 584	0.015	0.012	0.027	
A REAL PLAN IN MAN STA	Water and Sediment, Volume %	ASTM D2709	Not tested	0.000	0.000	
	Inductively Coupled Argon Plasma				<0.001*	
	Group I metals (Na + K), mg/kg	EN 1410/ modified	<1	•	•	
	Group II metais (Ca + Mg), mg/kg	EN 14107 modified	<1		•	
	Phosphorus, mg/kg	EN 14107 modified	<	-	-	
	Calcium (Ca), mg/kg	ASD TM D5185 modified		<0.05	<0.05	
	Potassium (K), mg/kg	ASDTM D5185 modified		<0.05	<0.05	
	Magnesium (Mg), mg/kg	ASDTM D5185 modified	-	<0.05	<0.05	
	Sodium (Na), mg/kg	ASDTM D5185 modified	-	3.5	1.0	
	Phosphorus (P), mass %	ASDTM D5185 modified	-	⊲0.001	<0.001	
	ARC Lab Sample Number	-	GO-2006-7292	GO-2007-1106	GO-2007-1107	

Health Canada Santé Canada

Commuting can pose a health hazard: study

CTV.ca News Staff

A new study by a team of German researchers suggests that commuting could be hazardous to your health. The study found an increased risk in having a heart attack, within two hours of being in traffic. Interestingly, patients who had taken the bus or ridden a bike were even more likely to have an attack.

The research team, led by Annette Peters of the National Research Center for Environment and Health in Neuherberg, looked at 691 people who suffered a heart attack between 1889 and 2001. They found that nearly one in 12 attacks was linked to being stuck in traffic.

People caught in traffic were roughly **three times more likely to suffer a myocardial infanction** within an hour, compared with those who avoided the journey altogether. The researchers believe that breathing in polluted air may be part of the problem. They noted:

drivers were 2.6 times more likely to suffer a heart attack than those who weren't in traffic.

public transportation users were 3.1 times more likely,

rand cyclists, 3.9 times more likely.

"Because the association was also observed for persons who used public transportation, it is unlikely that the effect is entirely attributable to the stress linked with driving a car," the researchers said. But they added "given our current knowledge, it is impossible to determine the relative contribution of risk factors such as stress and traffic-related air pollution."

The study was funded partly by the U.S. Environmental Protection Agency and published in the Thursday edition of *The New England Journal of Medicine*.

http://www.ctv.ca/servlet/ArticleHenre/story/CTVNenrs/1398294493645_93703693/?nub=CTVNenrsAt11

Нр	Class	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
<11		크						Tier 4F				
11-24		er 1										
25-48							Tie	r 4l				
49-74	Skid Steer Loaders											
75-99	Air Compressors & Welders											
100-173	UG Diesel Equipment											
174-301	UG Diesel Equipment				Tier 3					=		
302-602	D9s & D10s, 16 & 24MG, 988 Loaders		CD							er 41		Tie
603-751			CD									r 4F
>751	D11s, 150-363T Trucks, 992- 993-994 Loaders	Tie	er 1		Tie	er 2						

S3- 1

EPA Tiers 1-4

NOx / PM LIMITS SEGMENT Heavy Duty On-Highway EPA 99 4.0 / 0.1 EPA 04 2.5 / 0.1 EPA 07 1.2 / 0.01 EPA 10 0.2 / 0.01 Heavy Duty Off-Highway (75 - 750 hp) Tier 1 (1996) 9.2 / 0.54 Tier 2 (2001) (6.4) / 0.2 Tier 3 (2005) (4.0) / 0.2 2.0 / 0.02 0.4 / 0.02 Tier 4 I (2011) Tier 4 F (2014) High Horsepower High Horsepower (> 751 hp) Tier 1 (2000) 9.2 / 0.54 Tier 2 (2006) (6.4) / 0.20 3.5 / 0.10 Tier 4 I (2011) Tier 4 F (2015) 3.5 / 0.04

Emissions Control Systems

- Diesel Oxidation Catalyst: DOC, converts Monoxides to Dioxides. Will convert Hydro Carbons (HC) to CO2, NO to NO2 and CO to CO2. Very little impact to operation of machine.
- Exhaust Gas Recirculation: EGR is used to reduce NOX. It puts a percentage (5%-30%) of exhaust back into the combustion chamber. May cause operational problems.
- Diesel Particulate Filter: DPF's trap and then burn the particulate matter. Trapping soot is easy. Getting the soot out is the problem. May cause operational problems.
- Selective Catalyst Reduction: SCR coverts NOX to free oxygen and nitrogen. The process requires a catalyst and Diesel Exhaust Fluid (UREA). May cause operational problems.

Exhaust Gas Recirculation

- Early 70's on gas vehicles
- Works by recirculating 5%-30% of burnt exhaust gas through intake system and into combustion chamber
- Intention to reduce Nox, by reducing combustion chamber temperatures
- VGT, high pressure rail systems
- Large capacity cooler needed for EG/ increased problems in UG environment due to heat
- Requires sophisticated ECM/ too much retards causes hesitation/ too little causes Nox and ping
- Increases soot accumulation

Exhaust

 Increases abrasive contaminants to oil causing oil acidity reducing engine life

Intake

Cylinder Head

Cooled EGR with Controls

Tier 4i w/ SCR Technology

- Mercedes Benz OM926LA EU3b-T4i
- Engine family BMBXL07.2RJB
- 7.2 Liter 322 HP
- Non EGR/ All controls are internal
- Tier 1-2 application
- No particulate filter
- G/HR .002
- SCR system has its own integrated control module that communicates through CAN bus with engine ECM to control sequence of events.
- Will not dose if catalyst is below 200 degrees C.
- If Nox is above set limit, post catalyst, engine will de-rate.
- DEF consumption rate varies 3%-11%.

Diesel Exhaust Fluid (Urea) For SCR

- Non Toxic
- Synthetic Urea
- Cost between \$2.50-\$6.00/gallon
- Usage. 3%-15% depending on duty cycle and engine performance.
- Will freeze below 32F.
- Shelf life is 1 year.
- Shelf life is shortened when temperature is over 90F.
- Engine will derate if DEF tank is empty.

Equipment Emis	sions Data									
DOC/DPF		SCR								
Mine:		Leeville								
Unit Number:		UHT059								
Unit Type, Mfg. & DOC Mfg., Model,	Model; Engine Mfg., Model; Exhaust Diameter:	scR Merc	Tamrock E edes 4" Ex	EJC 30sx V haust	//Mercedes	926 T4i w/	SCR 322 H	IP		
Exhaust Analyzer	Make & Model:	ECOM AC			ECOM AC			ECOM AC		
Date:		02/24/11			03/10/11			04/28/11		
Location		DETB			DETB			DETB		
Oil Change										
Hour Meter Reading	ng:				101	MR2		631	MR2	
Hour Meter When	DOC/DPF installed	3.3 PLD			1	MR2		1	MR2	
Cumul nours on D	UC/DPF	D 0.00	D	of Ohenne	100	Deet COD	N/ Oherer	630	Deet COD	of Ohenne
		Pre SCR	POSt SCR	™ Cnange	Pre SCR	POSt SCR	™ Change	Pre SCR	POSt SCR	™ Cnange
	Roost Brossure	27lbo		WVALUE!	27lbo		MYALLE!	26lbo	i	WVALUE!
	TPS Counts	3/105		#VALUE!	3/105	ŀ	#VALUE!	Solos	1	#VALUE!
	Fuel Pressure	62.0			1				1	
	Cut out Test	02.0			1				1	
	No cutout pulse		1	1	1	1	I		1	1
	1-4 Pulse Width									
	1									
	2				1					
	3				1					
	4				l				1	
	Response Times		l	l	I	l			I	ł
	1				l				I	
					1				1	
	4				1	1	1		1	1
	RPM Stall Speed	1,845			1855.0			1855.0		
	Rated RPM									
	Fuel Temperature	100 F			87.0			134.0	1	
	Coolant Temperature	177 F			186.0	1		190.0		
	Oil Temperature	181.0			190.0			184.0		
	Air Temperature	95.0			92.0			120.0	4	
High	Idle Torque Stall				I					
	Temp. Air	69.0	68.0		74.0	74.0		72.0	74.0	
	Temp Gas	950.0	688.0	-	959.0	/22.0		963.0	//0.0	
	02 %	6.7	6.9	3	6.4	6.2		6.3	5.4	
	CO ppm	102.0	10.0	-90	118.0	14.0	-88	116.0	24.0	-79
	NO ppm	1040.0	88.0	-92	1069.0	101.0	-91	1145.0	112.0	-90
	NU ₂ ppm	35.0	5.0	-86	31.0	8.0	-74	22.0	5.0	-77
	NOx ppm	1075.0	93.0	-91	1100.0	109.0	-90	1167.0	117.0	-90
	CO2 %	10.5	10.3	-2	10.7	10.9	2	10.8	11.4	
	Operator Noise Db									
	Smoke No.	4	3	-25	2.5	2.5	0	5	3.5	-30
	Back Pres. In. W.G.		0.0							
	Gear	3	3		3	3				
		1	1			1		1		1

DÓC/DPF Mine: Unit Number: Unit Type, Mfg. & I DOC Mfg., Model, Exhaust Analyzer Date: Location Oil Change Hour Meter Readir Hour Meter When	Model; Engine Mfg., Mox Exhaust Diameter: Make & Model:	SCR Leeville UHT059 Jel, Hp.: SCR Merr								
Mine: Unit Type, Mfg. & I DOC Mfg., Model, Exhaust Analyzer Date: Location Oil Change Hour Meter Readir Hour Meter When Ournul Houre on D	Model; Engine Mfg., Mox Exhaust Diameter: Make & Model:	Leeville UHT059 fel, Hp.: SCR Merr								
Unit Number: Unit Type, Mfg. & I DOC Mfg., Model, Exhaust Analyzer Date: Location Oil Change Hour Meter Readir Hour Meter When Cumul bourg on D	Vodel; Engine Mfg., Moc Exhaust Diameter: Make & Model:	UHT059 Jel, Hp.: SCR Merr								
Unit Type, Mfg. & I DOC Mfg., Model, Exhaust Analyzer Date: Location Oil Change Hour Meter Readir Hour Meter When	Model; Engine Mfg., Mod Exhaust Diameter: Make & Model:	scR Merr								
Exhaust Analyzer Date: Location Oil Change Hour Meter Readir Hour Meter When	Make & Model:	JUCK Merc	I amrock E	JC 30sx W	Mercedes	926 T4i w/S	SCR 322 H	Р		
Exhaust Analyzer Date: Location Oil Change Hour Meter Readir Hour Meter When	Make & Model:	arritere	Jeues 4 EX	naust						
Date: Location Oil Change Hour Meter Readir Hour Meter When		ECOM AC	1		ECOM AC	-		ECOM AC	-	1
Oil Change Hour Meter Readir Hour Meter When		05/26/11			07/08/11			08/10/11		
Oil Change Hour Meter Readin Hour Meter When		DETB			DETB			DETB		
Hour Meter Readin Hour Meter When		L	1							
Cumul hours on D	ng:	999 MR2	1		1,284	MR2 MR2		163 (New I	MR2)	
	DC/DPF	1 000	-		1 202	wirk2		Approvim	tely 1582	-
some nouis on D		Pre SCR	Post SCP	% Change	Pre SCR	Post SCR	% Channe	Pre SCR	Post SCP	% Chance
	Boost Pressure	2250.0	<u>i</u>	-100	2380.0		-100	2475.0		-100
	TPS Counts									
	Fuel Pressure	L								
	Cut out Test	+	I	<u> </u>						
	1-4 Pulse Width	I				└───┤		II	├ ──┥	l
		 	+	<u> </u>	└── ┤	⊢−−−∔		H	<u> </u>	l
	2	<u> </u>	1	1 1	ا ا ا	⊢		H	1 1	I
	3	1	1	1	1			1 1		1
	4									
	Response Times									L
		L	<u> </u>			μ]				
	2	ł	+	lI	۱	I		I	li	l
		 	1	II	۱ <u> </u>	ŀ∔		I	li	
	4	1	1	1 1	├ ──┤				<u> </u>	
	RPM Stall Speed	1790.0			1803.0			1820.0		
	Rated RPM	1	1							
	Fuel Temperature	34.0	1 <u> </u>		52.0			39.0	1	
	Coolant Temperature	90.0			85.0	L		84		L
	Air Temperature	96.0	1	i	98.0	↓		88	1	l
Hick	die Torque Stall	44.U	2		57.0	<u> </u>		40		μ
riigh	Temp. Air	67 0	1	1	85.0			82.0	82.0	1
	Temp Gas	1009.0			971.0			907.0	635.0	
	O2 %	5.9			6.2			7.3	7.1	-3
	CO ppm	190.0			122.0			103.0	10.0	-90
	NO ppm	1203.0	1		1049.0			1071.0	66.0	-94
	NO ₂ ppm	19.0	<u>ــــــــــــــــــــــــــــــــــــ</u>		20.0	L		21.0	1.0	-95
	NOx ppm	1222.0			1069.0			1092.0	67.0	-94
	CO2 %	10.8	:		10.9			10.0	10.2	T
	Operator Noise Db									
	Smoke No.	3.5			3					
	Back Pres. In. W.G.	<u> </u>	<u> </u>			T				
	Gear	<u> </u>		L	3	L		3	3	

Caterpillar Engines

- On-Highway
 - 2007 Added DPF
 - 2010 no longer in the On-Highway market

Off-Highway

- 2011 >75hp small change,
- 2011 <75hp>750hp Add EGR and DPF
- 2015 <75hp>750hp Add SCR
- 2015 <750hp Uncertain, probably SCR

S3- 14

MTU/Mercedes

- On-highway
 - 2007 add DPF
 - 2010 add SCR

Off-Highway

- 2011 >75hp small change,
- 2011 <75hp>750hp Add SCR
- 2015 <75hp>750hp Add DPF
- 2015 >750 Uncertain

MDEC Workshop

Build your own database!							
Table 1. Emissions of New Equipment							
Engine	Rated hp	CO2 %	CO ppm	NO ppm	NO2 ppm	Comments	
Series 60	375	6.9	139	586	31	Turbocharged, DI	
Series 50	250	7.9	162	615	31	Turbocharged, DI	
F8L413FW	180	9.7	91	605	15	Naturally aspirated, IDI	
F8L413FW	180	7.9	95	708	23	Turbocharged, IDI	
F6L912W	82	11.4	527	630	17	Naturally aspirated, IDI	
		1	1	1	1		

USBM

• 1985 study of simulated faults in engines.

• Combinations of faults more severe than individual faults applied separately.

TEST	FAULT	DEGREE OF				Р	ARTICULATE:	S *
NO.	DESCRIPTION	FAULT	нс	CO	NOX	A	В	С
1-1	Intake Restriction $(in - H_2O)$	25	-28	+8	-15	+25	+31	+44
1-2	Intake Restriction (in - $B_2^{(0)}$)	50	-36	+28	-12	+75	-11	+104
2-1	Exhaust Restriction (in - Hg)	3.0	+17	+1	+9	- 15	+23	-6
2-2	Exhaust Restriction (in - Hg)	6.0	+2	+6	-3	-8	+16	-11
3-1	Timing Advance (from mfg. spec.)	-4•	+306	+53	-33	-4	+1037	-23

	De • Air-coo	eutz Eng led engine: co	ine T	<mark>ests</mark> (2 vstem fau	2) Its
		Operating Mode:	Cooling System	Cooling System	
		2500rpm & 100% load	Fault (%)	Fault & Kestr. %	
		Exhaust Restriction	0	+00	
		Cooline Air Outlet Temp	+8	+19.5	
		Exhaust Temperature	+11	+13	
		CO (% change)	+35	+56	
		NO _x (% change)	+2	-1	
		NO (% change)	+6	+3	
		NO ₂ (% change)	-60	-77	
		HC (% change)	+66	+66	
		O2 (% change)	0	-9	
		CO ₂ (% change)	+1	+8	
		DPM (% change)	+57	+100	
2 6	<u>CANMET MININ</u>	G AND MINERAL SCIE	NCES LABOR	RATORIES	Canada

filtration efficiency (% by							
mass)							
	Mode A	Mode B	Mode C	Mode D	Average		
Clean	80.3	66.7	75.9	87.1	77.5		
Charged	95.5	90.0	88.9	91.1	91.4		
Average	87.9	78.3	82.4	89.1	84.4		

Regeneration Strategies

- Very important!
- Without periodic regeneration, DPF will clog and fail.
- This regeneration may happen automatically with sufficient exhaust temperatures – or may require external heat input.

CANMET MINING AND MINERAL SCIENCES LABORATORIES

	C	ontrol 1		nology	Sur	nmary				
	Constituent	Oxidation Catalyst	Diesel Filter	Catalysed Filter	SCR					
	CO2	0	0	0	0					
	CO	60 - 80	0	60 - 80	60 - 80					
	HC	60 - 80	0	60 - 80	60 - 80					
	NO	0	0	0	60 - 80					
	NO2	0 or increase	0	0 or increase	60 - 80					
	SO2	0	0	0	0					
	DPM	20 - 30	85 - 95	85 - 95	0					
4	CANMET MI	NING AND MINER	<u>CANMET MINING AND MINERAL SCIENCES LABORATORIES</u> Canada							

Canada

- Smoking exhaust.
- Engine performance loss.
- Emissions-based maintenance program.
 - Regularly quantify device performance.

CANMET MINING AND MINERAL SCIENCES LABORATORIES

Catalyst Tests at Agnico

- Recent work at Agnico mine.
- Emissions testing comparing ECOM EC cell to stain tubes.
- Evidence of NO₂ formation.
- Note MSHA lug curve CO for Mercedes 904 (220ppm)

Camion 3102 (Detroit Diesel 60)						
Emission	Before Catalyst	After Catalyst				
CO ppm	75	55				
NO ppm	474	530				
NO ₂ ppm	0	56				
CO ₂ %	10.2	10.9				

Vehicule de Service VS3104 (Merc. 904)						
Emission	Before Catalyst	After Catalyst				
CO ppm	201	47				
NO ppm	504	515				
NO ₂ ppm	0	0				
CO ₂ %	10.1	10.4				

Canada

CANMET MINING AND MINERAL SCIENCES LABORATORIES

