Comparison Of Off-Road Specification EPA/CARB Passively Regenerated DPF To Mine Specification Passively Regenerated DPF

Authors: Paul Mackay, Bob Mojaverian, John Stekar

Catalytic Exhaust Products Limited, Brampton, Ontario

2011 Mining Diesel Emissions Conference, Toronto, Canada

Project Objectives

- 1) To determine which candidate DPF system had the lowest balance point temperature
- 2) To determine which candidate DPF system had the lowest NO2 make
- 3) To determine which candidate DPF system could be considered for CARB/EPA verification
- 4) To determine which candidate DPF system would also meet underground mine standards

Definitions

Balance Point Temperature (BPT):

BPT is determined by monitoring DPF back pressure and BPT is defined as the DPF temperature where the rate of PM collection equals the rate of PM oxidation

Test Engine

John Deere Diesel Engine

Model Number: 4039DF004

Horsepower: 58 hp @ 1800 rpm Displacement: 3.9 liters (239 CID)

Exhaust flow: 305 ft³/minute

Exhaust temp: 1040°F

Cylinders: 4 cylinder

Engine type: Inline 4-cycle

Aspiration: Natural

Test Instruments

DPM = Sierra Instruments BG2

NO/NO2/NOX

- = CAI model 600HCLD
- = Rosemount Analytical Model 955 Analyzer
- = Beckman Instruments Model 955 Analyzer

CO/CO2/O2 = CAI model 602P

THC/NMHC = CAI model 600M HFID

Description Of Passively Regenerated DPF

- System A 3 components consisting of cordierite DOC, cordierite DPF and a cordierite NO2 suppression catalyst
- System B 2 components consisting of metallic DOC and cordierite DPF with NO2 suppression coating
- System ${\bf C}$ 2 components consisting of metallic DOC and silicon carbide DPF with high NO2 suppression coating
- System D -2 components consisting of metallic DOC and silicon carbide DPF with medium NO2 suppression coating
- **System E** 1 component consisting of cordierite DPF with low platinum loading
- **System F** 1 component consisting of cordierite DPF with NO2 suppression coating

System A – 3 components consisting of cordierite DOC, cordierite DPF and a cordierite NO2 suppression catalyst

Conclusion

- EPA/CARB passively regenerated DPF produced significantly more NO2 than comparable mine specification DPF Certain components of EPA/CARB passively regenerated DPF may be suitable for underground mine applications

 Additional testing of DPF components is
 - Additional testing of DPF components is ongoing