

14th ANNUAL MDEC CONFERENCE

Sheraton Parkway, Toronto North, Canada October 5 – 10, 2008

MDEC SHORT COURSE ON DIESEL EMISSIONS & CONTROL TECHNOLOGIES

PRESENTED BY: Magdi K. Khair, SwRI

COORDINATED BY: MAHE GANGAL, NRCan

OCTOBER 7, 2008

Diesel Workshop

MDEC Short Course on Diesel Emissions & Control Technologies

Sheraton Parkway, Toronto North Ontario, Canada

Markham Room

Tuesday, October 7, 2008

Presented by: Dr. Magdi K. Khair, Southwest Research Institute

- 08:00 08:30 Registration & Gathering (Coffee available)
- 08:30 08:35 Welcome (Mahe Gangal, Co-chair MDEC Conference)
- 10:00 10:15 Coffee Break
- 12:00 12:45 Lunch
- 14:30 14:45 Coffee Break
- 16:30 Adjournment

MDEC Conference October 2008

Diesel Emissions & Control Technologies

Magdi K. Khair Southwest Research Institute San Antonio, TX

Outline

- Introduction
- The Challenge
- Diesel's Achilles' Heel
- Technical Options (for In-Cylinder Control)
- Aftertreatment Technical Options
- Accomplishments

Introduction

MKhair

Diesel Engines

- Excellent Reliability
- Excellent Durability
- Excellent Fuel Economy
- Low Engine-out HC
- Low Engine-out CO
- Low CO₂ Emission Contribution

3

4

But

NO_x and PM Problem

MKhair

Superior Durability of Diesel Engines

MKhair

Superior Fuel Economy of Diesel Engines

	City	Highway	Combined	Combined	CO ₂
	mpg	mpg	mpg	gal/mi	Reduction
<u>Dodge Durango</u>					
-Gasoline	12	17	13.8	0.072	
-Diesel	20.3	25.0	22.1	0.045	
			+60% Better	37% Reduced	27%
<u>Dodge Ram 1500</u>					
-Gasoline	12	16	13.5	0.074	
-Diesel	19.8	24.6	21.7	0.046	
			+61% Better	38% Reduced	28%

DOE-Funded Research at Cummins

Diesel Engines and the CO₂ Inventory

"The state wants to cut vehicles' output of carbon dioxide by 30 percent over the next decade, limiting a major greenhouse gas thought to contribute to global warming."

California's CO2 Plan Worries Automakers

Cutting Emissions Would Be Costly, Industry Warns

5 SCINEDDEX core in the source of the source

s nations/of without producing much benefit, Ullake other engine mixission, carbon dioxide and be filtered away, so the only way to car the state of the state of the state of the state interaction on a gallion of gashine. alignmin equators estimate that achieving their alignmin equators estimate that achieving their alignmin equators estimate that achieving their state of the state of the state of the state state of the state of the state of the state with state of the state of the state of the state with state of the state of the state of the state with state of the state with state of the st

MKhair

MKhair

The Challenge

On-Highway Emission Limits - Europe

Off-Highway Emission Limits

Tier 4 Emissio	on Standar	ds—Eng	jines Up T	o 560 kW,	g/kWh (g	/bhp-hr)
Engine Power	Year	со	NMHC	NMHC+NOx	NOx	PM
kW < 8 (hp < 11)	2008	8.0 (6.0)	-	7.5 (5.6)	-	0.4 ^a (0.3)
8 ≤ kW < 19 (11 ≤ hp < 25)	2008	6.6 (4.9)	-	7.5 (5.6)	-	0.4 (0.3)
$19 \le kW < 37$	2008	5.5 (4.1)	-	7.5 (5.6)	-	0.3 (0.22)
$(25 \le np < 50)$	2013	5.5 (4.1)	-	4.7 (3.5)	-	0.03 (0.022)
$37 \le kW < 56$	2008	5.0 (3.7)	-	4.7 (3.5)	-	0.3 ^b (0.22)
$(50 \le hp < 75)$	2013	5.0 (3.7)	-	4.7 (3.5)	-	0.03 (0.022)
56 ≤ kW < 130 (75 ≤ hp < 175)	2012-2014 ^c	5.0 (3.7)	0.19 (0.14)	-	0.40 (0.30)	0.02 (0.015)
130 ≤ kW ≤ 560 (175 ≤ hp ≤ 750)	2011-2014 ^d	3.5 (2.6)	0.19 (0.14)	-	0.40 (0.30)	0.02 (0.015)

a - hand-startable, air-cooled, DI engines may be certified to Tier 2 standards through 2009 and to an optional PM standard of 0.6 g/kWh starting in 2010

b - 0.4 g/kWh (Tier 2) if manufacturer complies with the 0.03 g/kWh standard from 2012

c - PM/CO: full compliance from 2012; NOx/HC: Option 1 (if banked Tier 2 credits used)—50% engines must comply in 2012-2013; Option 2 (if no Tier 2 credits claimed)—25% engines must comply in 2012-2014, with full compliance from 2014.12.31

d - PM/CO: full compliance from 2011; NOx/HC: 50% engines must comply in 2011-2013

MKhair

What is Needed?

A prosperous future with transportation Systems That are economically- and ecologically-friendly (ECO²)

Can the Diesel Engine Satisfy This Requirement?

15

Diesel's Achilles' Heel

MKhair

Flame Progression in Diffusion Combustion

MKhair

Comparison Between Diesel & Gasoline Combustion

*Heterogeneous: Fuel is injected into air *Homogeneous: Fuel is pre-mixed with air

Adapted From Caterpillar-K. Duffy-DEER 2002

MKhair

Definition of Particulate Matter

Any Matter In The Exhaust Of An Internal Combustion Engine *(excluding water vapor)* That Can Be Filtered at 125 Degrees (F) Or Less After Equilibration In Conditioned Air

MKhair

Sources of Particulate Matter

MKhair

25

Technical Options (For In-Cylinder Control)

Generalized/Simplified Solutions

For NO_x Reduction Lower Combustion Temperature

For PM Reduction

Better Mixing

The balance of this presentation will address these generalized/simplified solutions

Developments in In-Cylinder Technologies

- Fuel Injection System
- Combustion System
- Induction, EGR , and Charging Systems
- Valve Train

Fuel Injection System Developments

MKhair

Combustion ID Pressure Pressure Combustion Pressure w. Retard soc SOI Compression Pressure **Needle Lift** BDC TDC BDC TDC TDC **Crank Angle** Not to scale-for illustration only

Effect of Injection Timing Retard on Fuel Economy

MKhair

Effect of Injection Pressure on Fuel Consumption

Adding Control Flexibility to Injection Systems

MKhair

39

Effect of Reduced Ignition Delay

Reducing Fueling During Ignition Delay

Adding Control Flexibility through Multiple Injections/Combustion Cycle

Multi-injection fuel injection systems (3-5 pulses per cycle) are important for alternation combustion modes

in-cylinder reductant injection for DPF, LNT, Lean NO_x catalysts

 Fuel-air mixing can still be improved by higher injection pressure (> 200 MPa) and smaller injector hole sizes

Most Likely Injection Systems for Future Diesels

MKhair

43

Combustion System Developments

Improved Mixing through Port & Bowl Design

MKhair

Improved Mixing through Injector Positioning

Better Breathing with Multiple Intake Valves

MKhair

47

Combustion Bowl Designs for Better Mixing

- Spray-wall interactions are unavoidable
 - □ Avoid liquid impingement
 - Take advantage of jet breakup and wall-jet opportunities
- Pilot and Post injections change the bowl shape and spray angle requirements
 - CAT uses pilot at almost all conditions
 - Spray angle narrower

Adopting Alternate Combustion Modes

MKhair

49

The Main Promise of HCCI for Diesel Engines

Additional Aspects of HCCI Combustion

Ultra-low NO_x and potentially PM emissions
 Can achieve similar efficiency
 High HC and CO emissions
 Recent research focuses on incylinder injection
 Vaporization difficult with port injection

MKhair

Issues Associated with HCCI Combustion

Adapted From Caterpillar-DEER 2002 - Duffy

- Combustion Phasing and Control Proper Air / Fuel Mixing
- Limited Load Range
- Fuel Characteristics
- Cold Start

Effect of Ultra High Injection Pressure & Nozzle Hole Size 0.144 mm 4916 1921 1 П П в П п П П П П 0.128 mm 5226 052 1 5 П П П П П П П 0.086 mm ARCI DIRE

 Small Holes Produce High Pressure, Small SMD, High Mixing Rates and Low Soot Formation Rates MKhair

Induction, EGR, & Air Charging System Developments

Charge Air Cooling for Lower NO_x & Better Fuel Economy

Air-to-Air Intercooling For Better Fuel Economy and Lower NO_x Emissions

MKhair

Added Charge Air Control through VGT

Variable Geometry Turbo For Better Charging Throughout Engine Operating Modes to Control Smoke and Particulate Emissions

59

Higher Boost through In-Series Turbocharging

Advantage of High pressure Ratio Charging

The Higher the Pressure Ratio, the Greater the EGR rate & the Lower NO_x

MKhair

Why EGR and Not Another Diluent?

MKhair

High Pressure Loop EGR System – Short Route

Low Pressure Loop EGR System – Long Route

MKhair

Monitoring EGR Flow Rate

MKhair

Cooled LPL Exhaust Gas Recirculation for Lower NO_x

EGR Advantages/Disadvantages

Advantages	Disadvantages
 Good NO_x Reduction No Major Engine Redesign 	Increased Cooling Load
Bossenable Fuel Penalty	Increased Particulate Matter
- (Relative to Other	Increased Fuel Consumption
Technologies)	• Adverse Impact on Durability
Conditions	 Degrades Lube Oil Quality

Fuel Consumption Increase with EGR

EGR Effect on Air Flow

N²

EGR Effect on Smoke

Using Multiple Turbochargers for Better Air Control

Technical Advances in Turbocharging

MKhair

77

Modern LD Production Turbocharging System

Picture Source: BMW Geneva Motor Show Press Pack, March 2004, 43pp

Modern HD Production Turbocharging System

MKhair

79

Valve Train System Developments

Flexible Valve Control System

Variable Valve Actuation

Electro-Magnetic System

Camless Engine Design

Demofite of Feather Vielers Olesian

MKhair

Potential benefits of Valve Actuation

- Fuel Economy
 - □ Valve Overlap
 - □ Volumetric Efficiency
 - Cylinder Cutout
- Emissions
 - Fuel Economy Strategies + EGR Control
 - □ Variable Swirl, Tumble
- Startability
 - Higher Cranking Speeds through Cylinder Cutout
 - Increased Effective Compression Ratio

- Warm-Up
 - Internal EGR for Intake Charge Heat
- Transient Response
 - Early EVO for Reduced Turbo Lag
- Increased Low Speed Torque
 - □ 2+4 Stroke
 - □ Flush Cyl Charge at TDC
- Power Density
 Turbo Response with
 - Delayed Fuel Injection
- Engine Braking

MKhair

85

Example of a Variable Valve Actuation System

MKhair

Other Engines with Internal EGR

MKhair

Developments in Exhaust Aftertreatment

- Systems for PM Control
 - □ Diesel Oxidation Catalyst (DOC)
 - □ Diesel Particulate Filter (DPF)
- Systems for NO_x Control
 - □ Lean NOx Catalyst (LNC)
 - □ Lean NOx Trap (LNT)
 - Urea Selective Catalytic Reduction (SCR)

Proliferation of Diesel Oxidation Catalysts

- Underground Mining Over 250,000
- On Road & Off Road Over 750,000

Example Installation of a Diesel Oxidation Catalyst

- From 20 to 50% Total PM Reduction in Applications Using <500 ppm Sulfur Fuel
- From 60 to 90% HC Reduction (Including HC Species Considered Toxic)
- From 50 to 70% Reduction in CO
- Diesel Odor Reduction
- Passive device

MKhair

93

previous formulations

Collection of Diesel particulate Filters

MKhair

95

Principle of Operation of the Wallflow Design

Limitations of the Wallflow DPF Design Filtered exhaust gas **Diffusion Filtration** Engine exhaust Filtered exhaust gas Number *Particulate Collection Distributi Dp<60nm (Filtration Efficiencies of ~ 90%+) Dp <25 PM10 Dp<100 nm Dp<10 µm Particulate Disposal (Through the Regeneration Process) Mode No lode adio 0.100 1.000 ab 10000 Diameter (um)

Swiss Agency for the Environment , Berne 2000

Regeneration through the CRT Effect or NO₂ Regen

Using a Burner to Regenerate the DPF

MKhair

Example of a Retrofit System for PM Reduction ----DOC inet Temp -OOC Outst Tens -Ensuit Mass Flow 284 Temperature - deyC DPF .184 .. 81 47 83 84 85 66 67 ** 6.9 78 24 22 73 78 Heat 111111 Time . Min Fully Installed Active System DOC Fuel Injection Unit Fuel Delivery System Exhaust gas Diesel vapor

MKhair

Principle in DPF Regeneration Control

The Lean NOx Trap (NO_x Adsorber or NO_x Storage Catalyst)

Advantages

- Uses Same onboard HC (Fuel) as the Reductant
- Can Achieve Very High NO_X Conversion (>90%)
- Active temp. Range 250-450°C

Disadvantages

- Extremely Sensitive to Sulfur
- Complex Regeneration Control
- Complex/Critical Desulfation Control
- Uncertain Durability
- High Fuel Consumption Penalty (1.50-10.0%@95% Conversion)
- High Precious Metal Content

Urea Selective Catalytic Reduction-*Brief Description*

Advantages

- High NO_X Conversion (90%+)
- Excellent Sulfur Tolerance
- Active temp. Range 250-550°C
- Proven Durability
- Allows For Engine performance Optimization Flexibility

Disadvantages

- Requires Additional Fluid on Vehicle
- Infrastructure Issues
- Potential Ammonia Slip
- Size & Packaging
- Regulatory Enforcement Concerns

107

Example Urea SCR NO_x Reduction System

MKhair

NOx/PM Integrated System - Production

Another Example of a NO_x/PM Integrated System

BLUETEC – die Technologie für die saubersten Diesel der Welt BLUETEC – the technology for the cleanest diesels in the world

MKhair

113

Tradeoffs of Various Aftertreatment Architectures

	PM	NO,	Costs	нс	co,	Risks
Diesel Particulate Filter System	••	0		0	•	Ash deposits Oil dilution Emission impact due to regeneration
NO ₂ -Storage-System	••	•		•		HC inrease Aging behaviour
SCR Urea-System	••	•••		0	•	Urea infrastructure Urea consumption Packaging urea tank Freezing protection

wiknaii

Accomplishments

An Integrated System for NO_x/PM Reduction - LNT

A Demonstration By Ford Motor Company

MKhair

Thank You for your Attention

For More Information Please Contact

Magdi Khair at: <u>mkhair@swri.org</u> Telephone: (210) 522-5311 Cell: (210) 381-3060

MKhair