Controlling Exposure of Underground Coal Miners to Diesel Aerosols

by
Aleksandar D. Bugarski and Teresa L. Barone
National Institute for Occupational Safety and Health (NIOSH)
Pittsburgh Mining Research Division (PMRD)

22nd Annual MDEC Conference
Toronto, Ontario, Canada
October 4 – 6, 2016

Introduction

• Diesel engines in permissible heavy-duty (HD), non-permissible HD, and/or non-permissible light-duty (LD), underground mining equipment are the major contributors to ambient concentrations of criteria gases and submicron aerosols in the U.S. underground coal mines.

• Current MSHA regulations indirectly limit personal exposures of underground coal miners in the U.S. to DPM by limiting particulate matter emissions:
 – Permissible diesel-powered equipment must emit no more than 2.5 grams per hour of DPM [30 CFR 72.500];
 – Non-permissible diesel-powered HD equipment must emit no more than 2.5 grams per hour of DPM [30 CFR 72.501];
 – Non-permissible diesel-powered LD equipment must emit no more than 5.0 grams per hour of DPM [30 CFR 72.502].

References:
Introduction

• Certain equipment is exempt from aforementioned emission standards:
 – Generators and compressors that discharges its exhaust directly into intake air that is coursed directly to a return air course, or discharges its exhaust directly into a return air course [30 CFR 72.501];
 – Ambulances and fire fighting vehicles [30 CFR 72.502].

• The regulations are prescriptive and rely on:
 – Supplying at least minimum required quantities of ventilation air [30 CFR 75.325];
 – Controlling DPM emissions at their source:
 • use of certified engines;
 • clean fuels;
 • use of exhaust aftertreatment systems;
 • maintaining in-use emissions at certification levels.

• The regulations do not require direct measurements of personal exposure of coal miners to DPM.

• The exposure data is not available to verify the impact of prescribed control strategies.

References:

The current regulations require from underground operators to report an inventory of diesel equipment used in their mines [30 CFR 72.520]

• The data is self-reported by mines and compiled by MSHA in the national coal inventory [MSHA 2016].

• Although potentially slightly imperfect and not completely up-to-date, the inventory offers good insight in the use of diesel powered vehicles in the U.S. underground coal mines.

• This data base was used as one of the major sources of information for the presented analysis.

References:
Diesel-Powered Equipment in Underground Coal Mines in the U.S.

- Total of 5113 diesel-powered vehicles are recorded by 185 mines:
 - Permissible HD: 380 (7.4%)
 - Non-permissible HD: 1253 (25.5%)
 - Non-permissible LD: 3411 (66.7%)
 - Fire fighting and ambulance equipment [75.1908]: 16 (0.3%)
 - Unknown: 53 (1.0 %)

- Individual mines reported between 1 and 163 diesel-powered pieces of equipment on their inventory, with around 730 pieces of the equipment shared between nearby mines owned by the same operator.

- Only 93 out of 185 mines have more than 9 diesel-powered vehicles in their inventory.

Diesel-powered equipment is not used in equal manner across the U.S. underground coal mining industry.

- Diesel-powered permissible equipment is used only in 37 out of 185 mines. Only 18 of those mines have 5 or more permissible pieces.
Diesel-powered equipment is not used in equal manner across the U.S. underground coal mining industry.

- Non-permissible HD and LD vehicles are present almost in all mines with more than 9 diesel-powered vehicles.

Permissible power packages provide power to heavy-duty vehicles that are used in areas of underground coal and some other gassy non-metal mines where additional safety features are required.

- In the United States, the Mine Safety and Health Administration (MSHA) approves diesel engines (and power packages) following procedures described in 30 CFR Part 7 Subpart E for use in:
 - permissible applications [30 CFR 75.1907]:
 - 7E-AXXX
 - 07-EAXXXXX
 - non-permissible applications [30 CFR 75.1908]:
 - 7E-BXXX
 - 07-ENAXXXXX

References:
Permissible HD Equipment in Underground Coal Mines in the U.S.

- MSHA approved permissible power packages under Part 36 (prior 1999) and Part 7.

- Twenty-two of currently used packages have been powered by three high-emitting diesel engines certified by MSHA in late 1990’s (not in production any more), and six remaining packages are powered by 07-EPAXXXXX and 7E-AXXX.

- Total of 270 permissible HD vehicles in 37 underground coal mines in the U.S. are powered by 15 models of MSHA permissible diesel engines (07-EPAXXXXX and 7E-AXXX).

- The majority of those, approximately 59%, are still powered by older (7E-AXXX) engines.

<table>
<thead>
<tr>
<th>MSHA Approval Number</th>
<th>Make and Model, kW (hp) @ rpm</th>
<th>Approval Year</th>
<th>Engine-Out DPM* [g/kW-hr / ghp-hr]</th>
<th>EPA Tier 2 / Tier 3 [g/kW-hr / ghp-hr]</th>
<th>DPM [g/hr]</th>
<th>Number Permissible [#]</th>
<th>Number Non-Permissible [#]</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-EPA040001</td>
<td>Cummins C8.3, 138 (185) @ 2200</td>
<td>2004</td>
<td>0.24 / 0.18</td>
<td>0.20 / 0.15</td>
<td>23.08</td>
<td>71</td>
<td>7</td>
</tr>
<tr>
<td>07-EPA060001</td>
<td>Caterpillar 3306, 168 (225) @ 2500</td>
<td>2006</td>
<td>0.26 / 0.19</td>
<td>0.20 / 0.15</td>
<td>22.31</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>07-EPA080001-1</td>
<td>Deutz BF4M1013FC, 112 (150) @ 2200</td>
<td>2006</td>
<td>0.39 / 0.29</td>
<td>0.20 / 0.15</td>
<td>34.10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>07-EPA100001</td>
<td>Cummins 6CTAA 8.3, 172 (230) @ 2200</td>
<td>2012</td>
<td>0.18 / 0.13</td>
<td>0.20 / 0.15</td>
<td>15.26</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>07-EPA120001</td>
<td>Cummins 6CTAA 8.3, 138 (185) @ 2200</td>
<td>2012</td>
<td>0.20 / 0.16</td>
<td>0.20 / 0.15</td>
<td>12.35</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>07-EPA140001</td>
<td>Caterpillar 3306, 142 (190) @ 2200</td>
<td>2014</td>
<td>0.34 / 0.25</td>
<td>0.20 / 0.15</td>
<td>21.59</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>07-EPA140002</td>
<td>Cummins 6CTAA 8.3, 123 (165) @ 2200</td>
<td>2014</td>
<td>0.40 / 0.30</td>
<td>0.30 / 0.23</td>
<td>21.72</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>07-EPA160003</td>
<td>FPT N45MSTX20.50, 92 (124) @ 2200</td>
<td>2014</td>
<td>0.30 / 0.22</td>
<td>0.30 / 0.22</td>
<td>14.86</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7E-A001</td>
<td>Deutz MWM 916, 70 (94) @ 2300</td>
<td>1997</td>
<td>0.66 / 0.48</td>
<td>0.40 / 0.30</td>
<td>25.49</td>
<td>42</td>
<td>12</td>
</tr>
<tr>
<td>7E-A002</td>
<td>Caterpillar 3306 PCNA, 112 (150) @ 2200</td>
<td>1997</td>
<td>0.72 / 0.53</td>
<td>0.30 / 0.23</td>
<td>15.88</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>7E-A003</td>
<td>Caterpillar 3306 PCNA, 75 (100) @ 2200</td>
<td>1997</td>
<td>0.69 / 0.51</td>
<td>0.40 / 0.30</td>
<td>10.74</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>7E-A005</td>
<td>Caterpillar 3306 PETP, 142 (190) @ 2200</td>
<td>1999</td>
<td>0.58 / 0.43</td>
<td>0.20 / 0.15</td>
<td>11.08</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>7E-A006</td>
<td>Isuzu 8V51T MAX, 87 (118) @ 2500</td>
<td>2001</td>
<td>0.66 / 0.48</td>
<td>0.30 / 0.22</td>
<td>38.95</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

* Engines tested with 1% CH₄

EPA Tier 2/Tier 3
Permissible HD Equipment in Underground Coal Mines in the U.S.

- The other 110 vehicles labeled in the inventory as “permissible” are powered by 15 models of MSHA approved non-permissible diesel engines (7E-BXXX and 07-ENAXXXXX).

- Some of those are out-of-production engines that were converted to 7E-AXXX and 07-EPAXXXXXX engines, but remained erroneously labeled.

- Approximately 69% of engines in this group are 7E-BXXX engines.

- Ninety seven percent of permissible HD vehicles are equipped with a DFE that theoretically allows those to meet the 2.5 g/hr PM standard.

<table>
<thead>
<tr>
<th>MSHA Approval Number</th>
<th>Make and Model, Approval Year</th>
<th>Engine-Out DPM [g/kW-hr / g/hp-hr]</th>
<th>EPA Tier 2 / Tier 3 [g/kW-hr / g/hp-hr]</th>
<th>DPM [g/h]</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-ENA040006</td>
<td>Cummins C8.3, 138 (185) @ 2200 2004</td>
<td>0.30 / 0.22 0.20 / 0.15</td>
<td>24.45</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>07-ENA040007</td>
<td>Deutz BF4M1013FC, 129 (173) @ 2300 2004</td>
<td>0.09 / 0.07 0.30 / 0.22</td>
<td>6.2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>07-ENA040007-1</td>
<td>Deutz BF4M1013FC, 129 (173) @ 2300 2004</td>
<td>0.09 / 0.07 0.30 / 0.22</td>
<td>6.2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>07-ENA040013</td>
<td>Mitsubishi S4Q2-Y265DP, 36 (46) @ 2500 2004</td>
<td>0.36 / 0.27 0.60 / 0.45</td>
<td>6.93</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>07-ENA050001</td>
<td>Mitsubishi S4S-DT, 57 (77) @ 2500 2005</td>
<td>0.24 / 0.18 0.40 / 0.30</td>
<td>6.91</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>07-ENA060005</td>
<td>Caterpillar 3126B HEUI, 168 (225) @ 2500 2006</td>
<td>0.13 / 0.10 0.20 / 0.15</td>
<td>15.26</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>07-ENA070001</td>
<td>Daimler Chrysler 943MU32, 129 (173) @ 2200 2007</td>
<td>0.11 / 0.08 0.30 / 0.22</td>
<td>7.38</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>07-ENA110009</td>
<td>Cummins 6CTAA 8.3, 213 (285) @ 2200 2011</td>
<td>0.20 / 0.15 0.20 / 0.15</td>
<td>23.89</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>07-ENA130007</td>
<td>Cummins ISB6.7, 164 (220) @ 2900 2013</td>
<td>0.13 / 0.10 0.20 / 0.15</td>
<td>10.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7E-B003</td>
<td>Caterpillar 3306 PCNA, 112 (150) @ 2200 1997</td>
<td>0.66 / 0.49 0.30 / 0.22</td>
<td>39.08</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>7E-B004</td>
<td>Caterpillar 3304 PCNA, 75 (100) @ 2200 1997</td>
<td>0.64 / 0.48 0.40 / 0.30</td>
<td>25.49</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7E-B086</td>
<td>Isuzu C240, 39 (52) @ 3000 2001</td>
<td>0.21 / 0.16 0.40 / 0.30</td>
<td>4.25</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Non-Permissible HD Equipment in Underground Coal Mines in the U.S.

- Over 1250 non-permissible HD vehicles are powered by more than 100 different models of engines.
- Around 1190 of those are powered by 07-ENAXXXXXX and 7E-BXXX MSHA approved engines.
- Around 65 non-permissible HD vehicles are powered by 14 different models of 07-EPAXXXXXX and 7E-AXXX MSHA approved permissible diesel engines.
- Approximately 38%, of those are 7E-AXXX engines.
- However, over 91% of non-permissible HD vehicles are equipped with DPFs and DFEs that allow those to meet the 2.5 g/hr PM standard.

<table>
<thead>
<tr>
<th>MSHA Approval Number</th>
<th>Make and Model, kW (hp) @ rpm</th>
<th>DPM (g/kW-hr / ghp-hr)</th>
<th>EPA Tier 2 / Tier 3 (g/kW-hr / ghp-hr)</th>
<th>DPM (g/h)</th>
<th>Number [#]</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-ENA040002</td>
<td>Deutz BF4M2012, 75 (100) @ 2500</td>
<td>0.11 / 0.08</td>
<td>0.40 / 0.30</td>
<td>4.51</td>
<td>28</td>
</tr>
<tr>
<td>07-ENA040004</td>
<td>Deutz BF4L2011, 58 (78) @ 2800</td>
<td>0.11 / 0.08</td>
<td>0.40 / 0.30</td>
<td>3.70</td>
<td>58</td>
</tr>
<tr>
<td>07-ENA040007-1</td>
<td>Deutz BF4M1013FC, 118 (158) @ 2200</td>
<td>0.09 / 0.07</td>
<td>0.30 / 0.22</td>
<td>6.20</td>
<td>152</td>
</tr>
<tr>
<td>07-ENA040011</td>
<td>Deutz F4L2011 (D 2011L03), 38 (48) @ 2800</td>
<td>0.27 / 0.20</td>
<td>0.80 / 0.65</td>
<td>4.89</td>
<td>21</td>
</tr>
<tr>
<td>07-ENA040012</td>
<td>Deutz F4L2011, 48 (64) @ 2800</td>
<td>0.27 / 0.20</td>
<td>0.40 / 0.30</td>
<td>6.52</td>
<td>49</td>
</tr>
<tr>
<td>07-ENA040017</td>
<td>Cummins 4B3.3T, 63 (85) @ 2600</td>
<td>0.47 / 0.35</td>
<td>0.40 / 0.30</td>
<td>16.14</td>
<td>31</td>
</tr>
<tr>
<td>07-ENA050001</td>
<td>Mitsubishi S4S-DT, 57 (77) @ 2500</td>
<td>0.24 / 0.18</td>
<td>0.40 / 0.30</td>
<td>6.91</td>
<td>28</td>
</tr>
<tr>
<td>07-ENA060010</td>
<td>Cummins QS86.7, 196 (250) @ 2500</td>
<td>0.17 / 0.13</td>
<td>0.20 / 0.15</td>
<td>17.35</td>
<td>58</td>
</tr>
<tr>
<td>07-ENA070001</td>
<td>Daimler Chrysler 9643M032, 129 (173) @ 2200</td>
<td>0.11 / 0.08</td>
<td>0.30 / 0.22</td>
<td>7.36</td>
<td>68</td>
</tr>
<tr>
<td>07-ENA070002</td>
<td>Daimler Chrysler 9063M032, 150 (201) @ 2200</td>
<td>0.20 / 0.15</td>
<td>0.20 / 0.15</td>
<td>15.67</td>
<td>56</td>
</tr>
<tr>
<td>07-ENA070006</td>
<td>Cummins QS84.5, 82 (110) @ 2500</td>
<td>0.24 / 0.18</td>
<td>0.30 / 0.22</td>
<td>11.10</td>
<td>39</td>
</tr>
<tr>
<td>07-B008</td>
<td>Deutz BF4M 1013C, 115 (154) @ 2300</td>
<td>0.20 / 0.15</td>
<td>0.30 / 0.22</td>
<td>11.74</td>
<td>23</td>
</tr>
<tr>
<td>07-B083</td>
<td>Daimler Chrysler OM906LA, 150 (201) @ 2200</td>
<td>0.09 / 0.07</td>
<td>0.20 / 0.15</td>
<td>7.35</td>
<td>55</td>
</tr>
<tr>
<td>07-B099</td>
<td>Daimler Chrysler OM904LA, 90 (121) @ 2200</td>
<td>0.09 / 0.07</td>
<td>0.30 / 0.22</td>
<td>4.39</td>
<td>68</td>
</tr>
<tr>
<td>07-B099</td>
<td>Cummins QSB-C240, 179 (240) @ 2500</td>
<td>0.09 / 0.07</td>
<td>0.20 / 0.15</td>
<td>3.35</td>
<td>22</td>
</tr>
</tbody>
</table>
Non-permissible LD Equipment in Underground Coal Mines in the U.S.

- Over 3400 non-permissible LD vehicles are powered by more than 110 different models of engines.

- All but one of those vehicles are powered by 07-ENAXXXXXX and 7E-BXXX MSHA approved engines.

- The LD engines fall into the following categories:
 - 11-25 hp (3.2%),
 - 25-50 hp (12.3%),
 - 50-75 hp (21.8%),
 - 75-175 hp (44.1%), and
 - 175-750 hp (18.6%).

- 673 out of 3,411 LD vehicles, approximately 20% of non-permissible LD fleet, are equipped engines that are retrofitted with DPFs that allows those to meet the 5.0 g/hr PM standard.

The majority of engines found in the most prevalent non-permissible LD vehicles meet EPA Tier 2/Tier 3 DPM standard and few even meet EPA Tier 4 final standard.

<table>
<thead>
<tr>
<th>MSHA Approval Number</th>
<th>Make and Model, kW (hp) @ rpm</th>
<th>DPM (g/kW-hr / g/hp-hr)</th>
<th>EPA Tier 2 / Tier 3 or Tier 4 (g/kW-hr / g/hp-hr)</th>
<th>DPM (g/h)</th>
<th>Number [#]</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-ENA 030001</td>
<td>Mitsubishi s4s, 47 (63) @ 2500</td>
<td>0.35 / 0.26</td>
<td>0.40 / 0.30</td>
<td>7.65</td>
<td>198</td>
</tr>
<tr>
<td>07-ENA040002</td>
<td>Deutz BF4M2012, 75 (100) @ 2500</td>
<td>0.11 / 0.08</td>
<td>0.40 / 0.30</td>
<td>4.51</td>
<td>317</td>
</tr>
<tr>
<td>07-ENA040004</td>
<td>Deutz BF4L2011, 58 (78) @ 2800</td>
<td>0.11 / 0.08</td>
<td>0.40 / 0.30</td>
<td>3.70</td>
<td>355</td>
</tr>
<tr>
<td>07-ENA040011</td>
<td>Deutz F3L 2011 (D 2011L03), 36 (48) @ 2800</td>
<td>0.27 / 0.20</td>
<td>0.60 / 0.45</td>
<td>4.89</td>
<td>143</td>
</tr>
<tr>
<td>07-ENA040012</td>
<td>Deutz F4L2011, 48 (64) @ 2800</td>
<td>0.27 / 0.20</td>
<td>0.40 / 0.30</td>
<td>6.52</td>
<td>196</td>
</tr>
<tr>
<td>07-ENA040015-1</td>
<td>Cummins ISB-325, 160 (215) @ 2900</td>
<td>0.20 / 0.15</td>
<td>0.20 / 0.15</td>
<td>15.56</td>
<td>301</td>
</tr>
<tr>
<td>07-ENA050001</td>
<td>Mitsubishi S4S-DT, 57 (77) @ 2500</td>
<td>0.34 / 0.18</td>
<td>0.40 / 0.30</td>
<td>6.91</td>
<td>237</td>
</tr>
<tr>
<td>07-ENA070006</td>
<td>Cummins ISB 6.7, 164 (220) @ 2900</td>
<td>0.24 / 0.18</td>
<td>0.30 / 0.22</td>
<td>11.10</td>
<td>116</td>
</tr>
<tr>
<td>07-ENA100009</td>
<td>Cummins ISB 6.7, 164 (220) @ 2900</td>
<td>0.24 / 0.18</td>
<td>0.30 / 0.22</td>
<td>11.10</td>
<td>116</td>
</tr>
<tr>
<td>7E-B086</td>
<td>Isuzu C240 "RETIRED", 34 (46) @ 3000</td>
<td>0.21 / 0.16</td>
<td>0.40 / 0.30</td>
<td>4.25</td>
<td>123</td>
</tr>
<tr>
<td>07-ENA140005</td>
<td>Kubota D902-E4, 56 (75) @ 2900</td>
<td>0.15 / 0.11</td>
<td>0.40 / 0.30</td>
<td>4.25</td>
<td>11</td>
</tr>
<tr>
<td>07-ENA140006</td>
<td>Kubota D905-E4, 19 (25) @ 3000</td>
<td>0.15 / 0.11</td>
<td>0.40 / 0.30</td>
<td>1.42</td>
<td>6</td>
</tr>
</tbody>
</table>
Non-permissible LD Equipment in Underground Coal Mines in the U.S.

- Approximately 48% (1684 out of 3,411) pieces of non-permissible LD diesel-powered equipment emit less than 5.0 g/hr of DPM.

- Approximately 23% (788 out of 3,411) pieces of non-permissible LD diesel-powered equipment emit less than 2.5 g/hr of DPM.

- 116 of those, primarily with outputs between 11 and 25 hp, meet the 2.5 g/hr criteria as supplied by original equipment manufacturers (OEMs).

- The engines of the other 672 LD equipment were retrofitted by a third party supplier with diesel particulate filters (DPFs) or filtration systems with disposable filter elements (DFEs) to meet the 2.5 g/hr DPM criteria.

Technological advancements in engine and exhaust aftertreatment technologies are driven by technology forcing regulations promulgated around the world.

- Significant developments in emissions reduction technologies in response to regulations by the U.S., Europe, and California is reviewed relatively recently [Johnson, 2013]

- For example, U.S. EPA standards [66 Fed Reg. 5001 (2001)] for class of engines with output between 75 and 130 kW (100 and 175 hp):
 - 1997 (Tier 1): no standard
 - 2003 (Tier 2): PM = 0.30 g/kW-hr (0.22 g/ hp-hr);
 - 2007 (Tier 3, never adopted): PM = 0.30 g/kW-hr (0.22 g/ hp-hr);
 - 2011-2014 (Tier 4i and Tier 4f): PM = 0.02 g/kW-hr (0.01 g/ hp-hr).

Reference:
Advanced engine technologies did not penetrate underground mining market yet.

• Currently, the majority of the permissible diesel-powered vehicles are powered by engines that do not meet EPA Tier 2/Tier 3 PM standard.

• The fleet of non-permissible HD vehicles is powered predominantly by EPA Tier 2 engines from mid-2000s. Only 54 of 1253 non-permissible HD vehicles are powered by engines approved after 2010.

• Advanced engines are making slow ingress into the market: Approximately 0.5% of non-permissible LD vehicles are currently powered by engines that meet EPA Tier 4 standards.

In-Use vs. Certification Emissions

• Due to the absence of direct measurements of personal exposure of coal miners to DPM, the success of the applied strategy strongly depends on:
 – Maintaining in-use emissions at certification level;
 – Maintaining the effectiveness of exhaust aftertreatment systems at approval levels.

• Maintaining in-use emissions at certification levels currently depends on limited information obtained via mandated weekly CO-based emissions tests [30 CFR 75.1914].

• Due to limited scope, that testing provides very limited information on the actual levels of emissions and does not allow for direct comparison with certification data.

• Since the underground mining industry is extensively using rebuilt engines, the emissions of those engines should be closely scrutinized.

References:

Use of DFEs and DPFs

• Promulgation of DPM regulations resulted in widespread implementation of exhaust aftertreatment systems, particularly filtration systems with disposable filter elements (DFEs) and diesel particulate filter (DPF) systems.

• According to the inventory:
 – Over 97% of permissible HD vehicles are equipped with DFEs;
 – Over 90% of non-permissible HD vehicles are equipped with DPFs and DFEs;
 – Around 20% of non-permissible LD vehicles are equipped with DPFs and DFEs.

• Apparently, the filtration systems have very pivotal role in removing DPM from diesel fleets, particularly those with large number of antiquated engines.

• In the case of some high-emitting engines, lowering copious levels of DPM emissions to 2.5 g/h levels requires 95% efficient DFEs or DPFs.

Two general types of filtration systems with DFEs are currently used in permissible and some non-permissible HD applications [MSHA 2016].

References:
• MSHA [2016]. National coal diesel inventory. Mine Safety and Health Administration. [https://lakegovprod3.msha.gov/DieselInventory/ViewDieselInventoryExternal.aspx].
Filtration systems with DFEs are also used in over 900 non-permissible HD and LD coal mining applications (MSHA 2016).

- Some of those systems are identical to those used in permissible equipment.
- The others are systems specifically designed for non-permissible applications.
- With exception of those used in PA, WV and OH, non-permissible power packages do not have additional surface and exhaust temperature safety requirements.
- In non-permissible systems, dry heat exchangers are used to keep exhaust temperatures below 343 °C (650 °F) and therefore prevent damages on DFEs.
- DFEs are used to control DPM emissions below the 2.5 g/hour- (heavy-duty non-permissible) and 5.0 g/hour- (light-duty non-permissible) standards.

Disposable filter elements (DFEs) are used in those filtration systems to remove particulates from cooled exhaust.

- The elements are made of paper and synthetic materials (polyesters, polypropylene, fiberglass...).
- The pleated DFE cartridges consist of a felt or woven mat of fibers supported by mesh.
- Because the fiber media collects soot throughout their depth, the DFEs are classified as deep-bed filters.
MSHA tests DFEs for use in underground mining applications.

- DFEs for low temperature (up to 185 or 302 °F) and high temperature (up to 650 °F) applications are assessed by MSHA following Part 7 testing procedures [61 Fed. Reg. 55411 (1996)].

- Several products from 14 manufacturers are currently listed [MSHA 2016].

- The actual filtration efficiencies of low temperature DFEs are not reported, but expressed in terms of the equivalency to the 95% efficient “gold” standard paper DFE.

- The efficiencies of two verified high temperature DFEs are listed as 83 and 80% (at 650 °F).

Reference:

DFE technology currently used in underground mines has space for improvement.

- Results of the evaluation of two popular types of high-temperature DFEs performed at the NIOSH Lake Lynn Experimental Mine were used to demonstrate some of those issues.

- The effects of the DFE on the size distributions and concentration of diesel aerosols were discussed based on the results of measurements performed at upstream and downstream stations with:
 - TSI Scanning Mobility Particle Sizes (Model 3936);
 - Dekati Electrical Low Pressure Impactor (ELPI DAS 3100), and
 - Thermo Tapered Element Oscillating Microbalance (TEOM 1400a).

Reference:
During the off-gassing process, the filter media used in DFEs gives off aerosols.

- The breakdown of the paper and synthetic filter material causes the production of secondary emissions of various compounds and aerosols.

It might take a couple hours before some of currently used DFEs reach their terminal efficiency.

- The number (SMPS) and mass (TEOM) concentrations of aerosols in mine air decreased with test duration and the accumulation of DPM in the media.
After 12 hours of operations, tested filters were found to be relatively effective in reducing particulate mass and number.

- For engine modes R100, I50, and I100, tested DFEs reduced aerosol mass concentrations by more than 95% (TEOM).
- For R50, the reductions in aerosol mass concentrations were above 80% (TEOM).
- For R50 and I50, tested DFEs reduced aerosol number concentrations by more than 93% (SMPS) and 84% (ELPI).
- For R100, the reductions in aerosol number concentrations were 69% (SMPS) and 62% (ELPI).

![Graph showing concentration reduction](image)

Size distributions and number concentrations of aerosols emitted out of DFEs gradually changed during life of filter.

- With accumulation of DPM in the filters, the concentration of aerosols in mine air decreased and the geometric mean of aerosols increased.

![Graph showing size distribution](image)
Size distributions and number concentrations of aerosols emitted post DFEs depend on engine operating conditions /exhaust temperature.

- For R50 and I50, aerosols emitted by DFEs were distributed exclusively in accumulation mode.
- For R100 and I100, relatively large concentrations of aerosols were found in the nucleation mode.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Exhaust Temperature at Inlet to DFEs</th>
<th>Temperature at Outlet from DFEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>R50</td>
<td>203</td>
<td>154</td>
</tr>
<tr>
<td>R100</td>
<td>328</td>
<td>238</td>
</tr>
<tr>
<td>I50</td>
<td>157</td>
<td>120</td>
</tr>
<tr>
<td>I100</td>
<td>313</td>
<td>230</td>
</tr>
</tbody>
</table>

Efficiency of DFEs depended on engine operating conditions.

- Due to effects of exhaust temperatures on formation and transformation of aerosols, the efficiencies in removal of aerosols were substantially different between test modes.
Some of DFEs are replaced at their prime.

- The life of DFE depends primarily on exhaust flow rate and emissions.

- DFEs are replaced:
 - at the point when engine backpressure exceeds engine manufacturer recommended maximum engine backpressure;
 - every shift.

<table>
<thead>
<tr>
<th>MSHA Approval Number</th>
<th>Make and Model, kW (hp) @ rpm</th>
<th>Max. Engine Backpressure [in H2O/mbar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-EPA040001</td>
<td>Cummins C8.3, 138 (185) @ 2200</td>
<td>41 / 102</td>
</tr>
<tr>
<td>07-EPA060001</td>
<td>Caterpillar 3126B HEUI, 168 (225) @ 2500</td>
<td>80 / 199</td>
</tr>
<tr>
<td>07-EPA080001</td>
<td>Deutz BF4M1013FC, 112 (150) @ 2200</td>
<td>60 / 149</td>
</tr>
<tr>
<td>07-EPA110001</td>
<td>Cummins 6CTAA 8.3, 172 (230) @ 2200</td>
<td>60 / 149</td>
</tr>
<tr>
<td>07-EPA120001</td>
<td>Cummins 6CTAA 8.3, 138 (185) @ 2200</td>
<td>60 / 149</td>
</tr>
<tr>
<td>07-EPA140001</td>
<td>Cummins 6CTAA 8.3, 123 (185) @ 2200</td>
<td>60 / 149</td>
</tr>
<tr>
<td>7E-A001</td>
<td>Deutz MWM 916, 70 (94) @ 2300</td>
<td>40 / 100</td>
</tr>
<tr>
<td>7E-A002</td>
<td>Caterpillar 3306 PCNA, 112 (150) @ 2200</td>
<td>34 / 85</td>
</tr>
<tr>
<td>7E-A003</td>
<td>Caterpillar 3304 PCNA, 75 (100) @ 2200</td>
<td>34 / 85</td>
</tr>
<tr>
<td>7E-A005</td>
<td>Caterpillar 3306 PCTA, 142 (190) @ 2200</td>
<td>27 / 67</td>
</tr>
</tbody>
</table>

Efforts to Reduce Exposure of Underground Coal Miners in the U.S. in Retrospective

- DPM regulations were promulgated in 2001 and requirements for permissible and non-permissible HD equipment were gradually phased in and those took final shape in 2002 and 2005, respectively.

- An emphasis was given to implementation of risk control strategies known at the time of promulgation.

- The regulations undeniably resulted in great improvements in quality of air in underground mines, however due to the absence of direct monitoring, it is impossible to quantify actual impacts.
Some of the following factors are identified that especially hinder efforts to reduce the exposure of underground coal miners.

- Limited availability of low-emitting diesel-power packages for permissible HD applications;
- Slower-than-anticipated replacement of high-emitting diesel engines in permissible and non-permissible HD applications;
- Extensive use of high-emitting diesel engines in LD applications;
- Extensive dependence on use of disposable filter elements that in some cases might not provide advertised protection;
- Currently applied in-use emissions monitoring strategy might not be adequate to support the idea of maintaining emissions at certification levels;
- Absence of information on the levels of personal exposure of underground coal miners to DPM impedes evaluation of efficacy of prescribed control strategies.

- Addressing some or all of these issues would greatly facilitate efforts to reduce the exposure of underground coal miners.

Questions???

Aleksandar Bugarski
abugarski@cdc.gov
+1.412.386.5912

&

Teresa Barone
tbarone@cdc.gov
+1.412.386.6768