

Background

- 2000 NIOSH demonstrate relationship between differential pressure vs workplace respirable dust levels
- 2004 extension of this principle developed by NIOSH & SKC Inc to measure DPM under field conditions
- Device given operating name "Diesel Detective" and trialled in USA, Australia, Canada & South Africa

LLS vs Backpressue

- Research in Australia by NSW DPI (2004) and Davies (2013) suggested the use of a single conversion factor from TSP to EC by LLS devices is not valid for all engine types
- NSW DPI (2004) research indicated the use of Δp not influenced by engine type. Recent EC/Δp calibration using 8 different engine types supports this conclusion

Design of Diesel ChekMate®

- Developed ERP exhaust mixing & cooling system
- Enabled sampling direct from exhaust manifold and cooled exhaust to <50°C
- Overcame water on filter issues & gave better picture of key engine parameters
- Developed filter holder so a workplace dust sampling pump & a basic backpressure meter could be used

Design of Diesel ChekMate®

- Following feedback from operations ChekMate[®] has been fitted with flow control solenoid, linked timer & pendant for single person operation
- Patents pending in Australia, Canada & South Africa

<section-header><section-header>

<section-header>

Sampling System & Probe Connected to Raw Exhaust System

S4P1 - 8

S4P1 - 10

In Field Comparisons					
Workshop Location	Engine	ChekMate® EC mg/m3 (+/- 20% unc)	Sunset Lab. EC mg/m3 (+/- 15% unc)		
Cobar	Cat 15	38 (30-46)	35 (30-40)		
Cobar	Cat 15	47 (38-56)	31(26-36)		
Cobar	Cat 15	50 (40-60)	40 (34-46)		
Cobar	Cat 15	61 (49-73)	47 (40-54)		
Cobar	Cat 15	45 (36-54)	35 (30-40)		
Cobar	Cat 15	52 (42-62)	37 (31-43)		
Cobar	Cat 15	<25	6		
Cobar	Cat 15	29 (23-35)	37 (31-43)		

In Field Comparisons (cont)						
Workshop Location	Engine	ChekMate® EC mg/m3 (+/- 20% unc)	Sunset Lab. EC mg/m3 (+/- 15% unc)			
Cobar	Cat 15	33 (26-40)	35 (30-40)			
Cobar	Cat 15	43 (34-52)	29 (24-34)			
Cobar	Cat 15	56 (45-67)	48 (41-55)			
Newcastle	Cat 3306	>80	126 (107-145)			
Newcastle	Cat 3306	<25	1			
Wollongong	Cat 3306	>80	129 (110-148)			
Wollongong	Cat 3306	<25	<1			
Wollongong	Cat 3306	<25	2			

In Field Comparisons (cont)

Workshop	Engine	ChekMate®	Sunset Lab.
Location		EC mg/m3	EC mg/m3
		(+/- 20% unc)	(+/- 15% unc)
Wollongong	Cat 3306	<25	1
Wollongong	Cat 3306	<25	2
Perth	Cat 15	53 (42-64)	45 (38-52)
Perth	Cat 15	<25	<1
Perth	Cat 15	58 (46-70)	47 (40-54)
Perth	Cat 15	74 (59-89)	55 (47-63)
Perth	Cat 15	<25	1

Potential Applications

- In mine workshops as a tool (linked with an ECOM EN2-F gas analyser & DEEM6S software interface) for mine mechanics operating an emissions based maintenance program
- To test the in-service efficiency of DPFs
- Estimation of raw exhaust EC levels for ventilation calculations

- Engine exhausts with very high organics (grossly over fuelled) can give high results due to blockage of filter causing increased back pressure. Identified by ECOM Gas analysis
- Uncertainly of results +/- 20% which is adequate for a screening device (NIOSH 5040 analysis +/-12% on ChekMate® samples and +/- 15% including volume)

Summary A new simple low cost tool for site mechanics to screen dirty engines for maintenance When linked with an ECOM EN-2F gas analyser & DEEM6S software interface gives a powerful low cost diagnostic system that can be used at sites by site personnel

S4P1 - 14