MDEC 2009

NO₂ Emissions in Mines

1. Regulated Engine NOx Emissions

 $NOx = NO + NO_2$

NO – nitric oxide NO₂ – nitrogen dioxide

Nitrous oxide - N₂O (laughing gas) is not a regulated emission

2. Exposure Limits for Nitrogen Oxides

ACGIH TLV (TWA 8hr): NO: 25 ppm NO₂: 3 ppm

*N*₂*O*: 50 ppm

3. NOx Composition in Diesel Exhaust (no catalyst)

Older technology, naturally aspirated: NO: 95% NO₂: 5%

New, turbocharged diesel engines: NO: 85% NO₂: 15%

4. Oxidation of NO to NO₂

 $2NO + O_2 \leftrightarrow 2NO_2$

- reaction occurring spontaneously in the atmosphere
- equilibrium reaction

5. Impact of Oxidation Catalysts

- Oxidation catalysts greatly increase the NO/NO₂ reaction rate.
- Pt/Al₂O₃ catalysts—common in diesel applications—are especially active.
- Pt-based catalytic filters widely used in US 2007 engines.

Conclusion: Emission controlled diesel engines have significantly increased NO $_2$ /NO ratio in their total NOx emission.

6. Implications of High NO₂ / NOx—Environmental Effects

- Suspected adverse effects, but the exact impact remains uncertain
- Future emission standards also require very low NOx; even at increased NO₂/NOx ratios, the absolute NO₂ emissions will be reduced
- Little concern in regards to future emission standards
- Concerns exist in DPF retrofit applications with older high NOx engines
- California ARB: NO₂ must not be more than 20% of total NOx (based on uncontrolled engine emission baseline) for verified emission retrofit technologies

7. Occupational Health

- Increased diesel NO₂ may contribute to exceeding TLV levels
- MSHA PIB P02-7, July 16, 2002: "...particulate filters introduced into the underground [coal] mine (...) must not cause an increase in NO₂ concentrations in the raw exhaust."

8. Diesel Smoke Opacity Measurement—NO₂ Interference

 NO_2 absorbs green light and causes a false opacity reading. In DPF equipped engines, the majority of the opacity meter signal can be caused by NO_2 , rather than by diesel soot.

9. NO₂ Control—Diesel Oxidation Catalysts

- Selective formulations optimized for low sulfate emissions appear to have also low NO₂ production
 - Base metal/low Pt technology
 - Vanadium doped formulations
- But:
 - low sulfate formulations may have low effectiveness in controlling HC, CO, odor, etc.
 - low sulfate catalysts will be abandoned as ultra low sulfur fuels become available

10. NO₂ Control—Diesel Particulate Filters

- Passive DPF systems
 - Less active formulations possible (e.g., base metal DPFs), but require higher regeneration temperatures
 - can be applied only on very hot vehicles
 - Wide consensus on using Pt in passive and quasi-passive DPF systems (US heavy-duty engines, EU passenger cars)
- Fuel additive regenerated filters
 - low regeneration temperatures, low NO₂, but doping the fuel with additive often inconvenient
- Active DPF systems
 - There are no NO₂ problems, but no automated systems available for U.S. Mining market
 - Manually regenerated systems (electric off-board, shore power, ...)—no NO₂ increase, but high maintenance involved