Effect of Biodiesel Blended Diesel Fuel (B20) on Retrofitted Diesel Particulate Filter Behavior

Hannu Jääskeläinen & James S. Wallace

Department of Mechanical & Industrial Engineering University of Toronto

MDEC 2007

Introduction

- DPF retrofits are important for achieving significant PM reductions from existing equipment.
- Tighter emission standards do not always ensure significant PM reductions from one engine generation to the next.

Introduction - Goals of this research.

- An important aspect of any retrofitted DPF is the ability to passively (no operator interaction) keep it clean.
 - Balance point temperature (BPT)
 - exhaust gas temperature where rate of particulate accumulation = rate of particulate oxidation.
 - Over the longer term, it is important for the DPF to regenerate fully
 - avoid slow accumulation of difficult to oxidize particulate.
- What is the effect of biodiesel (B20)?

Introduction - Goals of this research.

- This research wanted to answer the following questions:
 - What is the impact of the amount of soot accumulated on the DPF (soot loading) on Balance point temperature (BPT) of a passive filter?
 - How does B20 affect BPT and its dependence on soot loading?
 - Does B20 show an effect on the ability of a DPF to stay clean?

<section-header><list-item><list-item><list-item>

Review-DPF regeneration mechanisms

MECHANISM	GEOMETRIC REACTION CHARACTERISTICS	ACTIVE TEMPERATURE RANGE, deg.C	ACTIVATION ENERGY, KJ/MOLE	USEFUL FOR
OXIDATION BY NO2	Proportional to NO2 available and soot layer thickness	200 to 400	20 to 40	Passive or engine management
CATALYTICALLY ENHANCED OXIDATION	Proportional to catalyst surface area	>300 deg.C	Depends on catalyst	Passive, engine management, or HC injection
DIRECT OXIDATION	Proportional to total soot present	> 450 deg.C	95 to 170	HC injection
		Sour	ce: Bunting et al., D	DEER 2002

Review-Biodiesel & Aftertreatment Systems

Lower DPF BPT	soot morphology	
Catalyst deactivation	may contain elements that	P - catalyst poison
	can poison/deactivate	K - deactivate vanadia SCR catalysts,
	catalysts	destabilizing effect on refractory
		oxides in the washcoat, corrode
		cordierite catalyst substrates
		Ca - affect SCR catalysts
Increased DPF ash	high allowable levels of	more of a concern with high level
loading	inorganic impurities	blends
Engine oil dilution	especially when filter	higher boiling temperature increases
	regeneration relies on post-	the likelihood of liquid fuel spray
	injection of fuel in the	reaching the cylinder wall during late-
	cylinder	cycle injection
DPF regeneration	lower heating value means	more of a concern with high level
reliability	sufficient heat may not be	blends
	generated to fully	
	regenerate DPF	
DPF soot loading	calculation of DPF soot	regeneration may not start when
estimate	mass less accurate	needed
	S	ource: DieselNet.com

Project Summary

- 1997 Cummins B3.9 non-road engine. Meets US EPA Tier 1 emission standards for $75 \le kW < 130$ engines.
- Fuels:
 - ultra low sulphur diesel (ULSD)
 - 20% by volume soy based biodiesel in ULSD (B20)
- DPF:
 - ECS filter with a low precious metal loading

Project Summary

- Engine conditions:
 - ISO 8178 Mode 9, intermediate speed and 25% load used for DPF loading.
 - Low exhaust temperature 236 °C at DPF inlet
 - load and speed increased to ISO 8178 Mode 2, rated speed and 75% load
 - Final exhaust temperature ~> 450 °C at DPF inlet

1		. •
Hue	Proper	1es
	roper	

	ULSD	B100
Flash Point, °C	74.0	175.0
Distillation, 90%	249.7	349.9
Recovered, °C		
Kinematic Viscosity at	1.764	3.968
40 °C, mm2/s(cSt)		
Sulfur, mg/kg	<2.0	<2.0
Cetane Number	49.8	54.6
Cloud Point, °C	-67.2	-1

B100 blended with the ULSD to give B20

MDEC 2007

MDEC 2007

Conclusions

• B20 showed:

- ~13 °C lower BPT.
- Less variability in BPT
- Less impact from initial soot loading on BPT when oxidation was by NO₂.
- Improved ability to fully regenerate the DPF
- DPF soot accumulation was not significantly affected by B20 in this study.

Lower DPF BPT	soot morphology	Less sensitive to soot loading. Lower variability.
Catalyst deactivation	may contain elements that can poison/deactivate catalysts	P - catalyst poison K - deactivate vanadia SCR catalysts, destabilizing effect on refractory oxides in the washcoat, corrode cordierite catalyst substrates Ca - affect SCR catalysts
Increased DPF ash loading	high allowable levels of inorganic impurities	More of a concern with high level blends.
Engine oil dilution	especially when filter regeneration relies on post- injection of fuel in the cylinder	Higher boiling temperature increases the likelihood of liquid fuel spray reaching the cylinder wall during late- cycle injection.
DPF regeneration reliability	lower heating value means sufficient heat may not be generated to fully regenerate DPF	More of a concern with high level blends. May be partially offset by more complete regeneration.
DPF soot loading estimate	calculation of DPF soot mass less accurate	Regeneration may not start when needed.

Acknowledgments

- Partners: Engine Control Systems Ltd.
- Sponsors:
 E-Tech
 NRCan
 Auto21